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Preface

The main motivation for such lecture notes is the importance of the concept
and mechanism of spontaneous symmetry breaking in modern theoretical
physics and the relevance of a textbook exposition at the graduate student
level beyond the oversimplified (non-rigorous) treatments, often confined to
specific models. One of the main points is to emphasize that the radical loss
of symmetric behaviour requires both the existence of non-symmetric ground
states and the infinite extension of the system.

The first Part on SYMMETRY BREAKING IN CLASSICAL SYSTEMS
is devoted to the mathematical understanding of spontaneous symmetry
breaking on the basis of classical field theory. The main points, which do
not seem to appear in textbooks, are the following.

i) Existence of disjoint Hilbert space sectors, stable under time evo-
lution in the set of solutions of the classical (non-linear) field equations.
They are the strict analogs of the existence of inequivalent representa-
tions of local field algebras in quantum field theory (QFT). As in QFT
such structures rely on the concepts of locality (or localization) and sta-
bility, as discussed in Chap. 5, with emphasis on the physical motiva-
tions of the corresponding mathematical concepts; such structures may
have the physical meaning of disjoint physical worlds, disjoint phases etc.
which can be associated to a given non-linear field equation. The result
of Theorem 5.2 may be regarded as a generalization of the criterium of
stability to infinite dimensional systems and it links such stability to el-
liptic problems in Rn with non-trivial boundary conditions at infinity
(Appendix E).

ii) Such structures allow to reconcile the classical Noether theorem with
spontaneous symmetry breaking, through an improved Noether the-
orem which accounts for (and explains) the breaking of the symmetry
group (of the equations of motion) to one of its subgroups in a given
Hilbert space sector (Theorem 7.1).

iii) The classical counterpart of the Goldstone theorem is proved in
Chap. 9, which corrects the heuristic perturbative arguments of the lit-
erature.

The presentation emphasizes the general ideas (implemented in explicit
examples) without indulging on the technical details, but also without dero-
gating from the mathematical soundness of the statements.
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The second Part on SYMMETRY BREAKING IN QUANTUM SYS-
TEMS tries to offer a presentation of the subject, which should be more
mathematically sounded and convincing than the popular accounts, but not
too technical. The first chapters are devoted to the general structures which
arise in the quantum description of infinitely extended systems with emphasis
on the physical basis of locality, asymptotic abelianess and cluster property
and their mutual relations, leading to a characterization of the pure phases.

Criteria of spontaneous symmetry breaking are discussed in Chap. 8
along the lines of Wightman lectures at Coral Gables and their effectiveness
and differences are explicitly worked out and checked in the Ising model. The
Bogoliubov strategy is shown to provide a simple rigorous control of spon-
taneous symmetry breaking in the free Bose gas as a possible alternative to
Cannon and Bratelli-Robinson treatment.

The Goldstone theorem is critically discussed in Chap. 15, especially
for non-relativistic systems or more generally for systems with long range
delocalization. Such analysis, which does not seem to appear in textbooks,
clarifies the link between spontaneous symmetry breaking in gauge theories
and non-relativistic Coulomb systems and in our opinion puts in a more con-
vincing and rigorous perspective the analogies proposed by Anderson. The
Swieca conjecture about the role of the potential fall off is checked by a per-
turbative expansion in time. Such an expansion also supports the condition
of integrability of the charge density commutators, which seems to be over-
looked in the standard treatments and plays a crucial role for the energy
spectrum of the Goldstone bosons. As a result of such an explicit analysis
the critical decay of the potential for allowing “massive” Goldstone bosons
turns out to be that of the Coulomb potential, rather than the one power
faster decay predicted by Swieca condition.

The non-zero temperature version of the Goldstone theorem discussed in
Chap. 16, corrects some wrong conclusions of the literature. An extension
of the Goldstone theorem to non-symmetric Hamiltonians is discussed in
Chap. 18 with the derivation of non-trivial (non-perturbative) information
on the energy gap of the modified Goldstone spectrum.

A version of the Goldstone theorem for gauge symmetry breaking in local
gauges, which accounts for the absence of physical Goldstone bosons (the-
orem on the Higgs mechanism) is presented in Chap. 19, by exploiting
an extension of the Goldstone theorem for relativistic local fields, which does
not use positivity, and the crucial role of the Gauss law constraint on the
physical states.
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Introduction to Part I

These notes essentially reproduce lectures given at the International School
for Advanced Studies (Trieste) and at the Scuola Normale Superiore (Pisa)
on various occasions. The scope of the short series of lectures, typically a
fraction of a one-semester course, was to explain on general grounds, also to
mathematicians, the phenomenon of Spontaneous Symmetry Breaking (SSB),
a mechanism which seems at the basis of most of the recent developments in
theoretical physics (from Statistical Mechanics to Many-Body theory and to
Elementary Particle theory).

Besides its extraordinary success, the idea of SSB also deserves being
discussed because of its innovative philosophical content, and in our opinion it
should be part of the background knowledge for mathematical and theoretical
physics students, especially those who are interested in questions of principle
and in general mathematical structures.

By the general wisdom of Classical Mechanics, codified in the classical
Noether theorem, one learns that the symmetries of the Hamiltonian or of the
Lagrangean are automatically symmetries of the physical system described
by it, which does not mean that the (equilibrium) solutions are symmetric,
but rather that the symmetry transformation commutes with time evolution
and hence is a symmetry of the physical behaviour of the system. This belief
therefore precludes the possibility of describing systems with different dynam-
ical properties in terms of the same Hamiltonian. The realization that this
obstruction does not a priori exist, and that one may unify the description
of apparently different systems in terms of a single Hamiltonian and account
for the different behaviours by the mechanism of SSB, is a real revolution in
the way of thinking in terms of symmetries and corresponding properties of
physical systems. It is, in fact, non-trivial to understand how the conclusions
of the Noether theorem can be evaded and how a symmetry of the dynamics
cannot be realized as a mapping of the physical configurations of the system,
which commutes with the time evolution.

The standard folklore explanations of SSB, which one often finds in the
literature, is partly misleading, because it does not emphasize the crucial
ingredient underlying the phenomenon, namely the need of infinite degrees of
freedom. Despite the many popular accounts, the phenomenon of SSB is deep
and subtle and it is not without reasons that it has been fully understood only
in recent times. The standard cheap explanation identifies the phenomenon
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with the existence of a degenerate ground (or equilibrium) state, unstable
under the symmetry operation, (ground state asymmetry), a feature often
present even in simple mechanical models (as for example a particle on a
plane, each point of which defines a ground state unstable under translations),
but which is usually not accompanied by a non-symmetric behaviour.

As it will be discussed in these lectures, the phenomenon of spontaneous
symmetry breaking in the radical sense of non-symmetric behaviour is rather
related to the fact that, for non-linear infinitely extended systems (therefore
involving infinite degrees of freedom), the solutions of the dynamical problem
generically fall into classes or “islands”, stable under time evolution and with
the property that they cannot be related by physically realizable operations.
This means that starting from the configurations of a given island one cannot
reach the configurations of a different island by physically realizable modi-
fications. The different islands can then be interpreted as the realizations
of different physical systems or different phases of a system, or as disjoint
physical worlds.

The spontaneous breaking of a symmetry (of the dynamics) in a given
island (or phase or physical world) can then be explained as the result of the
instability of the given island under the symmetry operation. In fact, in this
case one cannot realize the symmetry within the given island; namely, one
cannot associate with each configuration the one obtained by the symmetry
operation.

The existence of such structures is not obvious and in general it involves
a mathematical control of the non-linear time evolution of systems with in-
finite degrees of freedom and the mathematical formalization of the concept
of physical disjointess of different islands. For quantum systems, where the
mathematical basis of SSB has mostly been discussed, the physical disjoint-
ness has been ascribed to the existence of inequivalent representations of the
algebra of local observables.

The scope of these lectures is to discuss the general mechanism of SSB
within the framework of classical dynamical systems, so that no specific
knowledge of quantum mechanics of infinite systems is needed and the mes-
sage may also be suitable for mathematical students. More specifically, the
discussion will be based on the mathematical control of the non-linear evo-
lution of classical fields, with locally square integrable initial data which may
possibly have non-vanishing limits at infinity.

The mathematical formalization of physical disjointness relies on the con-
straint of essential localization in space of any physically realizable operation
(so that configurations with different limits at infinity belong to disjoint is-
lands). One can in fact show that an island can be characterized by some
bounded (locally “regular”) reference configuration, having the meaning of
the “ground state”, and its H1 perturbations. Each island is therefore iso-
morphic to a Hilbert space (Hilbert space sector).

The stability under time evolution is guaranteed by the condition that
the reference configuration satisfies a generalized stationarity condition, i.e.
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it solves some elliptic problem. Such a condition is in particular satisfied by
the time independent solutions and a fortiori by the minima ϕ of the potential
whose corresponding Hilbert space sectors Hϕ are of the form {ϕ + χ, χ ∈
H1} . The existence of minima of the potential unstable under the symmetry
therefore gives rise to islands (or phases or disjoint physical worlds) in which
the symmetry cannot be realized or, as one says, is spontaneously broken. This
mechanism crucially involves both the asymmetry of the ground state and the
infinite extension of the system, with no analog in the finite dimensional case.

This phenomenon is deeply rooted in the non-linearity of the problem and
the fact that infinite degrees of freedom are involved. A simple prototype is
given by the non-linear wave equation for a Klein-Gordon field ϕ : Rs → Rn,
with “potential” U(ϕ) = λ(ϕ2 −a2)2. The model displays some analogy with
the mechanical model of a particle in Rn subject to the potential U(q) =
λ(q2 − a2)2, which can be regarded as the higher dimensional version of the
one-dimensional double well potential. But the differences are substantial:
in the infinite dimensional case of the Klein-Gordon field, each point q has
actually become infinite dimensional and, in fact, each absolute minimum ϕ,
with |ϕ| = a identifies the infinite set of configurations which have this point
as asymptotic limit, namely the Hilbert space of configurations which are H1

modifications of ϕ. Whereas in the finite dimensional case there is no physical
obstruction or “barrier”, which prevents the motion from one minimum to
the other, in the infinite dimensional case there is no physically realizable
operation which leads from the Hilbert space sector defined by one minimum
to that defined by another minimum, because this would require to change
the asymptotic limit of the configurations and this is not possible by means of
essentially localized operations, the only ones which are physically realizable.
Pictorially, one could say that one cannot change the boundary conditions of
the “universe” or of the (infinite volume) thermodynamical phase in which
one is living.

The realization of the above structures allows to evade part of the con-
clusions of the standard textbook presentations of Noether’s theorem and
obtain an improved version which also accounts for SSB; the point is that
the standard presentations of the theorem do not consider the possibility of
disjoint sectors unstable under the symmetry of the Hamiltonian and implic-
itly assume that the solutions vanish at infinity. In fact, one may prove that
the local conservation law, ∂µ jµ(x) = 0, associated with a given symmetry
of the Hamiltonian or of the Lagrangean, gives rise to a global conservation
law or to a conserved “charge” in a given island, only if the symmetry leaves
the island stable. Thus, the improved version of Noether’s theorem still yields
the local conservation laws corresponding to the generators of the symmetry
group G of the dynamics, but in a given phase or physical world one has the
global conservation law only for the generators of the stability group of the
given island.

Clearly, if G is the (concrete) group of transformations which commutes
with the time evolution, the whole set of solutions of the non-linear dynamical
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problem can be classified in terms of irreducible representations (or multi-
plets) of G, but if G is spontaneously broken in a given island defined by the
Hilbert space sector Hϕ, the latter cannot be the carrier of a representation
of the symmetry group G, and in particular the elements of Hϕ cannot be
classified in terms of multiplets of G.

One might think of grouping together solutions corresponding to initial
data of the form ϕ + g χ, g ∈ G, which might look like candidates for mul-
tiplets of G. As a matter of fact, such sets of initial data do correspond to
representations of a group of transformations which is isomorphic to G, but
which does not commute with the dynamics, and therefore the above form of
the initial data does not extend to arbitrary times; thus the above identifi-
cation of multiplets at the initial time is not stable under time evolution. As
a matter of fact, the group of transformations which commute with the time
evolution corresponds to ϕ + χ → g ϕ + g χ, g ∈ G, which, however, does
not leave Hϕ stable.

Within this approach, it is possible to prove a classical counterpart of the
so-called Goldstone theorem, according to which there are massless modes
(i.e. solutions of the free wave equation) associated to each broken generator.
The theorem proved here provides a mathematically acceptable substitute of
the heuristic arguments and corrects the conclusions based on the quadratic
approximation of the potential around an absolute minimum.

Explicit examples which illustrate how these ideas work in concrete mod-
els are discussed in Chap. 8.

The discussion of symmetry breaking in classical systems relies, with some
additions, on papers written jointly with Cesare Parenti and Giorgio Velo, to
whom I am greatly indebted (see the references at the relevant points). An at-
tempt is made to reduce the mathematical details to the minimum required to
make the arguments self-contained and also convincing for a mathematically-
minded reader. The required background technical knowledge is kept to a
rather low level, in order that the lectures be accessible also to undergradu-
ate students with a basic knowledge of Hilbert space structures.



1 Symmetries of a Classical System

The realization of symmetries in physical systems has proven to be of help
in the description of physical phenomena: it makes it possible to relate the
behaviour of similar systems and therefore it leads to a great simplification
of the mathematical description of Nature.

The simplest concept of symmetry occurs at the geometrical or kinemat-
ical level when the shape of an object or the configuration of a physical
system is invariant or symmetric under geometric transformations like rota-
tions, reflections etc.. At the dynamical level, a system is symmetric under a
transformation of the coordinates or of the parameters which identify its con-
figurations, if correspondingly its dynamical behaviour is symmetric in the
sense that the action of the symmetry transformation and of time evolution
commute.

To formalize the concept of dynamical symmetry we first recall that the
description of a classical physical system consists in

i) the identification of all its possible configurations {Sγ}, with γ running
over an index set of coordinates or parameters which identify the config-
uration Sγ

ii) the determination of their time evolution

αt : Sγ → αtSγ ≡ Sγ(t). (1.1)

A symmetry g of a physical system is a transformation of the coordinates
(or of the parameters) γ, g : γ → gγ, which

1) induces an invertible mapping of configurations

g : Sγ → gSγ ≡ Sgγ (1.2)

2) does not change the dynamical behaviour1, namely

αtgSγ = αtSgγ ≡ S(gγ)(t) = Sgγ(t) = gαtSγ . (1.3)

1 To simplify the discussion, here we do not consider the more general case in
which the dynamics transform covariantly under g (like e.g. in the case of Lorentz
transformations). For a general discussion of symmetries and of their relevance in
physics see R.M.F. Houtappel, H. Van Dam and E.P. Wigner, Rev. Mod. Phys.
37, 595 (1965).

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 7–8
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8 Part I: Symmetry Breaking in Classical Systems

The above condition states that the symmetry transformation commutes
with time evolution. For classical canonical systems, this amounts to the in-
variance of the Hamiltonian under the symmetry g (symmetric Hamiltonian).

The realization of a symmetry which relates (the configurations of) two
seemingly different systems clearly leads to a unification of their descrip-
tion. In particular, the solution of the dynamical problem for one configura-
tion automatically gives the solution for the symmetry related configuration
(see (1.3)).

Example 1. Consider a particle moving on a line, subject to a double well
potential, i.e. described by the following Hamiltonian

H = 1
2p

2 + 1
4λ(q2 − a2)2, (1.4)

with q, p the canonical coordinates which label the configurations of the parti-
cle. The reflection g : q → −q, p → −p leaves the Hamiltonian invariant and
is a symmetry of the system; obviously, it maps solutions (of the Hamilton
equations) into solutions.

Now, consider the two classes of solutions corresponding to initial con-
ditions in the neighborhoods of the two absolute minima q0 = ±a, with
p0 <

√
λa2/2 respectively, and suppose that by some (artificial) ansatz, in

the preparation of the initial configurations one cannot dispose of energies
greater than λa4/4. This means that the two classes of solutions correspond
to two effectively different “systems”, since one cannot go from one to the
other by physically realizable operations. The realization that g relates the
configurations of the two systems leads to a unified description of them.

For a particle moving on a plane the analog of the double well potential
defines a Hamiltonian which is invariant under rotations around the axis
(through the origin) orthogonal to the plane and one has a continuous group
of symmetries. There is a continuous family of absolute minima lying on the
circle |q0|2 = a2. Since such minima are not separated by any energy barrier
one cannot associate with them different systems by some artificial ansatz as
above. In any case the symmetry can be used to relate the time evolution of
configuration related by it.



2 Spontaneous Symmetry Breaking

One of the most powerful ideas of modern theoretical physics is the mecha-
nism of spontaneous symmetry breaking. It is at the basis of most of the recent
achievements in the description of phase transitions in Statistical Mechanics
as well as of collective phenomena in solid state physics. It has also made
possible the unification of weak, electromagnetic and strong interactions in
elementary particle physics. Philosophically, the idea is very deep and subtle
(this is probably why its exploitation is a rather recent achievement) and the
popular accounts do not fully do justice to it.

Roughly, spontaneous symmetry breaking is said to occur when a sym-
metry of the Hamiltonian, which governs the dynamics of a physical system,
does not lead to a symmetric description of the physical properties of the
system. At first sight, this may look almost paradoxical. From elementary
courses on mechanical systems, one learns that the symmetries of a system
can be seen by looking at the symmetries of the Hamiltonian, which describes
its time evolution; how can it then be that a symmetric Hamiltonian gives
rise to an asymmetric physical description of a dynamical system?

The cheap standard explanation is that such a phenomenon is due to the
existence of a non-symmetric absolute minimum or “ground state”, but the
mechanism must have a deeper explanation, since the symmetry of the Hamil-
tonian implies that an asymmetric stable point cannot occur by alone, (the
action of the symmetry on it will produce another stable point). Now, the
existence of a set of absolute minima related by a symmetry (or “degenerate
ground states”), does not imply a non-symmetric physical description. One
actually gets a symmetric picture, if the correct correspondence is made be-
tween the configurations of the system (and their time evolutions), and such
a correspondence is physically implementable if for any physically realizable
configuration its transformed one is also realizable.

The way out of this argument is to envisage a mechanism by which, given
a non-symmetric absolute minimum (or “ground” state) S0, there are phys-
ical obstructions to reach its transformed one, g S0, by means of physically
realizable operations, so that effectively one gets confined to an asymmetric
physical world. The purpose of the following discussion is to make such a
rather vague and intuitive picture more precise.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 9–11
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10 Part I: Symmetry Breaking in Classical Systems

For a classical finite dimensional dynamical system, two configurations
may be said to be related by physically realizable operations if they are
connected by a continuous path of configurations, all with finite energy. In
this way, one gets a partition of the configurations into classes and given a
configuration S, the set of configurations which can be reached from it, by
means of physically realizable operations, will be called the phase ΓS , or the
“physical world”, to which S belongs.

A symmetry g will be said to be physically realized (or implementable or
unbroken), in the phase Γ , if it leaves Γ stable.

To illustrate the above definitions, we consider a particle moving on a
line, subject to a deformed double well potential, still invariant under the
reflection g : q → −q, with two absolute minima at q0 = ±a, but going to
infinity as q → 0.

Consider now two kind of (one-dimensional) creatures, one living in the
valley with bottom q0 = a and the other in the valley with bottom q0 = −a.
The infinite potential barrier prevents going from one valley to the other
(tunnelling is impossible ); then, e.g. the people living in the r.h.s. valley do
not have access to the l.h.s. valley, neither by action on the initial conditions of
the particle nor by time evolution. Thus, the operations which are physically
realizable (by each of the two kinds of people) cannot make transition from
one valley to the other and the particle configurations get divided into two
phases, labeled by the two minima Γa, Γ−a, respectively.

The reflection symmetry is not physically realized in each of the two
phases. As a matter of fact, even if the particle motion is described by a
symmetric Hamiltonian, the particle physical world will look asymmetric to
each kind of creatures: the symmetry is spontaneously broken.

The somewhat artificial example of spontaneous symmetry breaking dis-
cussed above is made possible by the infinite potential barrier between the
two absolute minima. Clearly, such a mechanism is not available in the case
of a continuous symmetry, since then the (absolute) minima are continuously
related by the symmetry group and no potential barrier can occur between
them (for a concrete example see the two dimensional double well discussed
above). Thus, for finite dimensional classical dynamical systems, a continuous
symmetry of the Hamiltonian is always unbroken (even if the ground state is
degenerate and non-symmetric).

The often quoted example of a particle in a two dimensional double well
potential is a somewhat misleading example of spontaneous breaking of con-
tinuous symmetry (it is also an incorrect example in one dimension, unless
the potential is so deformed to produce an infinite barrier between the two
minima). Actually, most of the claimed simple mechanical examples of spon-
taneous symmetry breaking discussed in the literature are equally misleading.

Even if the existence of non-symmetric minima is a rather peculiar phe-
nomenon which deserves special interest, it does not imply spontaneous sym-
metry breaking in the sense of its realization in elementary particle physics,
many body systems, statistical mechanics etc., where a symmetry of the dy-
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namics is not shared by the physical description of the system. This is a much
deeper phenomenon than the mere existence of non-symmetric minima.

The relevance of the distinction between non-symmetric minima or
ground states and spontaneous symmetry breaking appears clear if one con-
siders e.g. a free particle on a line, where each configuration (q0 ∈ IR, p0 = 0)
is a minimum of the Hamiltonian and it is not stable under translations, but
nevertheless one does not speak of symmetry breaking; in fact, according to
our definition there is only one phase stable under translations.

The two concepts of symmetry breaking coincide for infinitely extended
systems, since in this case, as we shall see below, different ground states de-
fine different phases or disjoint worlds; therefore their asymmetry necessarily
leads to symmetry breaking in the radical sense of a non-symmetric physical
description (see Chap. 7 below).

Similar considerations apply to classical systems which exhibit bifurca-
tion2 for which, strictly speaking, one does not have spontaneous symmetry
breaking as long as the multiple solutions are related by physically realizable
operations. As we shall see later, the latter property may fail if one considers
the infinite volume (or thermodynamical) limit, and in this way spontaneous
symmetry breaking may occur.

2 D.H. Sattinger, Spontaneous Symmetry Breaking: mathematical methods, ap-
plications and problems in the physical sciences, in Applications of Non-Linear
Analysis, H. Amann et al. eds., Pitman 1981.



3 Symmetries in Classical Field Theory

As the previous discussion indicates, it is impossible to realize the phe-
nomenon of (spontaneous) breaking of a continuous symmetry in classical
mechanical systems with a finite number of degrees of freedom. We are thus
led to consider infinite dimensional systems, like classical fields.

To simplify the discussion we will focus our attention to the standard case
of the non-linear equation

�ϕ+ U ′(ϕ) = 0, (3.1)

where ϕ = ϕ(x, t), x ∈ IRs, t ∈ IR, is a field taking values in IRn, (an
n-component field), U(ϕ) is the potential, which for the moment will be
assumed to be sufficiently regular, and U ′ denotes its derivative.

Equation (3.1) can be derived by the stationarity of the following action
integral

A(ϕ, ϕ̇) =
∫
dsx dt [− 1

2 (∇ϕ)2 + 1
2 ϕ̇

2 − U(ϕ)].

A typical prototype is given by

U(ϕ) = 1
4λ(ϕ2 − a2)2 (3.2)

which is the infinite dimensional version of the double-well potential discussed
in Chap. 1.

Quite generally (3.1) occurs in the description of non-linear waves in many
branches of physics like non-linear optics, plasma physics, hydrodynamics,
elementary particle physics etc.3. The above equation (3.1) will be used to
illustrate general structures likely to be shared by a large class of non-linear
hyperbolic equations.

The solution of the Cauchy problem for the (in general non-linear) equa-
tion (3.1), with given initial data

ϕ(x, t = 0) = ϕ0(x), ∂tϕ(x, t = 0) = ψ0(x), (3.3)

provides the classical field ϕ(x, t) described by (3.1).
3 See e.g. G. B. Whitham, Linear and Non-Linear Waves, J. Wiley, New York 1974;

R. Rajaraman, Phys. Rep. 21 C, 227 (1975); S. Coleman, Aspects of Symmetry,
Cambridge Univ. Press 1985, Chap. 6
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14 Part I: Symmetry Breaking in Classical Systems

In analogy with the previous discussion of the finite dimensional systems,
a description of the system (3.1) consists in the identification of the class of
initial conditions, for which the time evolution is well defined. Deferring the
mathematical details, we will now denote by X the functional space within
which the Cauchy problem is well posed, i.e. such that for any initial data

u0 =

(
ϕ0

ψ0

)
∈ X (3.4)

there is a unique solution u(x, t) continuous in time (in the topology of X,
see below) and belonging to X for any t, briefly u(x, t) ∈ C0(X, IR).

Thus, X can be regarded as describing the initial configurations of the
system (3.1) and it is stable under time evolution.4

In analogy with the finite dimensional case, a symmetry of the system
(3.1) is an invertible mapping Tg of X onto X, which commutes with the time
evolution. To simplify the discussion, we will make the technical assumption
that Tg is a continuous mapping (in the X topology) of the form

Tg

(
ϕ(x)

ψ(x)

)
=

(
g(ϕ(x))

Jg(ϕ(x))ψ(x)

)
, (3.5)

with g a diffeomorphism of IRn of class C2 and Jϕ the Jacobian matrix of
g. Such symmetries are called internal symmetries, since they commute with
space and time translations.5

Under general regularity assumptions on the potential, such that for in-
finitely differentiable initial data the corresponding solution of (3.1) is of
class C2 in the variables x and t, one gets a characterization of the internal
symmetries of the system (3.1).

Theorem 3.1. 6 Under the above assumption on U , any internal symmetry
of the system (3.1) is characterized by a g which is an affine transformation

g(z) = Az + a, (3.6)
4 For an extensive review on the mathematical problems of the non-linear wave

equation see M. Reed, Abstract non-linear wave equation, Springer-Verlag, Hei-
delberg 1976. For the solution of the Cauchy problem for initial data not vanish-
ing at infinity, a crucial ingredient for discussing spontaneous symmetry breaking,
see C. Parenti, F. Strocchi and G. Velo, Phys. Lett. 59B, 157 (1975); Ann. Scuola
Norm. Sup. (Pisa), III, 443 (1976), hereafter referred as I. A simple account with
some addition is given in F. Strocchi, in Topics in Functional Analysis 1980-
81, Scuola Normale Superiore Pisa, 1982. For a beautiful review of the recent
developments see W. Strauss, Nonlinear Wave Equations, Am. Math. Soc. 1989.

5 For the discussion of more general symmetries see C. Parenti, F. Strocchi and
G. Velo, Comm. Math. Phys. 53, 65 (1977), hereafter referred as II; Phys. Lett.
62B, 83 (1976).

6 Ref. II (see above footnote).
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where a ∈ IRn and A is an n× n invertible matrix. Furthermore, the invari-
ance of the action integral up to a scale factor requires

ATA = λ1, (3.7)

with AT the transpose of A and λ a suitable constant. A, a, λ, which depend
on g, satisfy the following condition,

U(Az + a) = λU(z) + U(a). (3.8)

Proof. The condition that Tgαt u0 = αtTgu0 be a solution of (3.1), for any
initial data u0, implies7

0 = �gk(ϕ) + U ′
k(g(ϕ)) =

=
∂2gk
∂zi∂zj

(ϕ) ∂µϕi∂µϕj − ∂gk
∂zi

(ϕ)U ′
i(ϕ) + U ′

k(g(ϕ)). (3.9)

Choosing the initial data such that ϕ0(x) = const ≡ c, ψ0(x) = 0, for x in
some region of IRs, the first term of (3.9) vanishes there and one gets

−∂gk
∂zi

(c)U ′
i(c) + U ′

k(g(c)) = 0. (3.10)

Since c is arbitrary, the sum of the last two terms vanishes for any ϕ. Choosing
now ϕ0(x) = c, ψ0(x) = const = b, x ∈ V ⊂ IRs, one gets

∂2gk
∂zi∂zj

(c) = 0, ∀c ∈ IRn, i.e. g(z) = Az + a.

Equation (3.9) then becomes

∂

∂zl
U(Az + a) = (ATA)li

∂

∂zi
U(z).

The invariance of the action integral up to a scale factor requires ATA = λ1
and U(Az + a) = λU(z) + const; the normalization U(0) = 0 identifies the
latter constant as U(a).

Having characterized the possible symmetries of (3.1), we may now ask
whether symmetry breaking can occur. For continuous groups this possibility
seems to be in conflict with Noether’s theorem.

7 We use the convention by which sum over dummy indices is understood; further-
more the relativistic notation is used: µ = 0, 1, 2, 3, ∂0 = ∂/∂t, ∂i = ∂/∂xi, i =
1, 2, 3, ∂µ = gµν∂ν , g

00 = 1 = −gii, gµν = 0 if µ �= ν.
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Theorem 3.2. (Noether 8). Let G be an N parameter Lie group of inter-
nal symmetries for the classical system (3.1), then there exist N conserved
currents

∂µJαµ (x, t) = 0, α = 1, ...N (3.11)

and N conserved quantities

Qα(t) =
∫
dsx J0(x, t) = Qα(0). (3.12)

For the proof we refer to any standard textbook.9 One should stress that
for (3.12) some regularity properties of the solution are needed, even if they
are not spelled out in the standard accounts of the theorem.10

The above theorem seems to imply that a continuous symmetry of the
Lagrangean or of the Hamiltonian gives rise to a constant of motion acting
as the generator of the symmetry group. Actually, the deep physical question
of spontaneous breaking requires a more refined analysis of the mathematical
properties of the solutions; as we shall see, the problem of existence of “is-
lands” or phases, stable under time evolution (playing the role of the valleys
of the example discussed in Chap. 2) will require a sort of stability theory for
the infinite dimensional system (3.1).

8 E. Noether, Nachr. d. Kgl. Ges. d. Wiss. Göttingen (1918), p.235.
9 See e.g. H. Goldstein, Classical Mechanics, 2nd. ed., Addison-Wesley 1980; E. L.

Hill, Rev. Mod. Phys. 23, 253 (1951).
10 See e.g. the above quoted book by H. Goldstein.



4 General Properties of Solutions
of Classical Field Equations

The first basic question is to identify the possible configurations of the sys-
tems (3.1), namely the set X of initial data for which the time evolution
is well defined and which is mapped onto itself by time evolution. In the
mathematical language, one has to find the functional space X for which the
Cauchy problem is well posed. In order to see this, one has to give condi-
tions on U ′(ϕ) and to specify the class of initial data or, equivalently, the
class of solutions one is interested in. Here one faces an apparently technical
mathematical problem, which has also deep physical connections.

In the pioneering work by Jörgens11 and Segal12 the choice was made of
considering those initial data (and, consequently, those solutions) for which
the total “kinetic” energy is finite13

Ekin ≡ 1
2

∫
[(∇ϕ)2 + ϕ2 + ψ2] dsx < ∞, ψ = ϕ̇. (4.1)

From a physical point of view condition (4.1) is unjustified and it auto-
matically rules out very interesting cases, like the external field problem, the
symmetry breaking solutions, the soliton-like solutions and, in general, all the
solutions which do not decrease sufficiently fast at large distances to make
the above integral (4.1) convergent. Actually, there is no physical reason why
Ekin should be finite, since even the splitting of energy into a kinetic and
a potential part is not free of ambiguities. Therefore, we have to abandon
condition (4.1) and we only require that the initial data are locally smooth

11 K. Jőrgens, Mat. Zeit. 77, 291 (1961).
12 I. Segal, Ann. Math. 78, 339 (1963).
13 Strictly speaking, the kinetic energy should not involve the term ϕ2. Our abuse

of language is based on the fact that the bilinear part of the total energy corre-
sponds to what is usually called the “non-interacting” theory (whose treatment
is generally considered as trivial or under control by an analysis in terms of nor-
mal modes). The remaining term in the total energy is usually considered as the
true interaction potential.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 17–20
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18 Part I: Symmetry Breaking in Classical Systems

in the sense that ∫
V

[(∇ϕ)2 + ϕ2 + ψ2] dsx < ∞ (4.2)

for any bounded region V (locally finite kinetic energy).
As it is usual in the theory of second order differential equations, one may

write (3.1) in first order (or Hamiltonian) formalism, by grouping together
the field ϕ(t) and its time derivative ψ(t) = ϕ̇(t) in a two component vector

u(t) =
(
ϕ(t)
ψ(t)

)
≡
(
u1(t)
u2(t)

)
.

Equation (3.1) can then be written in the form

du

dt
= Ku+ f(u), (4.3)

with the initial condition

u(0) = u0 =
(
ϕ0
ψ0

)
, (4.4)

where

K =
(

0 1
	 0

)
, f(u) =

(
0

−U ′(ϕ)

)
. (4.5)

One of the two components of (4.3) is actually the statement that ψ = ϕ̇.
It is more convenient to rewrite (4.3) as an integral equation which incor-

porates the initial conditions. To this purpose, we introduce the one param-
eter continuous group W (t) generated by K and corresponding to the free
wave equation (see Appendix A)

W (0) = 1, W (t+ s) = W (t) W (s) ∀t, s.

Then, the integral form of (4.3) is

u(t) = W (t)u0 +
∫ t

0
W (t− s)f(u(s))ds. (4.6)

The main advantage of (4.6) is that, in contrast to (4.3), it does not involve
derivatives of u and, as we will see, it is easier to give it a precise meaning.

In first order formalism, the condition that the kinetic energy is locally
finite reads: u1 = ϕ ∈ H1

loc(IR
s), (i.e. |∇ϕ|2 + |ϕ|2 is a locally integrable

function); u2 = ψ ∈ L2
loc(IR

s). Thus, we assume the following local regularity
condition of the initial data

u ∈ H1
loc(IR

s) ⊕ L2
loc(IR

s) ≡ Xloc. (4.7)
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The space Xloc is equipped with the natural topology generated by the family
of seminorms

‖u‖2
V =

∫
V

((∇ϕ)2 + ϕ2)dsx+
∫
V

ψ2dsx (4.8)

As in the finite dimensional case, in order to solve the Cauchy problem
we need some kind of Lipschitz condition14 on the potential; in agreement
with the local structure discussed above, it is natural to chose the following
local condition.

Local Lipschitz Condition

a) f(u) defines a continuous mapping of Xloc into Xloc

b) for any sphere ΩR, of radius R, and for any ρ > 0, there exists a constant
C(ΩR, ρ), such that

‖f(u1) − f(u2)‖ΩR
≤ C(ΩR, ρ) ‖u1 − u2‖ΩR

, (4.9)

for all u1, u2 ∈ Xloc such that ‖ui‖ΩR
≤ ρ, i = 1, 2 and

sup
0≤t≤R/2

C(ΩR−t, ρ) ≡ C̄(ΩR, ρ) < ∞.

The above local Lipschitz condition is satisfied by a large class of potentials U :

i) in s = 1 dimension, if U(ϕ) is an entire function;
ii) for s = 2, if

U(ϕ) =
∞∑

α∈Nn

Cαϕ
α, (4.10)

α being a multi-index, ϕα = ϕα1
1 ...ϕn

αn , with
∑
α∈Nn

|Cα| |α||α|/2|ϕ||α| < ∞,

iii) for s = 3, if U is a twice differentiable real function such that

sup
ϕ

(1 + |ϕ|2)−1|U ′′(ϕ)| < ∞. (4.11)

The proof that the above classes of potentials satisfy the local Lipschitz
condition is similar to that for global Lipschitz continuity (see Lemma 5.3
in Chap. 5), except that local Sobolev inequalities are used instead of global
ones (for details see Ref. I, quoted in Chap. 3).

Since, for the present purposes, we are not interested in optimal condi-
tions, (for a more general discussion see Ref. I), in the following discussion,
for simplicity, we will consider potentials belonging to the above classes, for
s = 1, 2, 3.
14 See e.g. V. Arnold, Ordinary Differential Equations, Springer 1992, Chap. 4; G.

Sansone and R. Conti, Non-linear Differential Equations, Pergamon Press 1964.
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The above Local Lipschitz condition guarantees that

1) (4.6) is well defined for u ∈ C0(Xloc, IR)
2) the solution of (4.6), if it exists, is unique
3) (4.6) has an hyperbolic character, i.e. the local norm of u(t) in the sphere

ΩR−t of radius R− t, 0 < t < R, depends only on the local norm of u(0)
in the sphere ΩR of radius R (the influence domain)

‖u(t)‖ΩR−t
≤ Aeωt‖u(0)‖ΩR

, (4.12)

( ω a suitable constant)
4) solutions of (4.6) exist for sufficiently small times.

For the proof of 1) – 4), see Appendix B.

To continue the solutions from small times to all times, and in this way get
a global in time solution of the Cauchy problem, one needs a bound which
implies that the norm of u(t) stays finite. This is guaranteed if U satisfies the
following

Lower Bound Condition

There exist suitable non-negative constants α, β such that

U(ϕ) ≥ −α− β|ϕ|2. (4.13)

In conclusion we have

Theorem 4.1. (Cauchy problem: global existence of solutions)15. If U is such
that the local Lipschitz condition and the lower bound condition are satisfied,
then (4.6) has one and only one solution u(t) ∈ C0(Xloc, IR).

For a brief sketch of the proof see Appendix C.

15 To our knowledge the proof of global existence of solutions of (4.6) for initial data
in H1

loc ⊕L2
loc first appeared in Ref. I, although the validity of such a result was

conjectured by W. Strauss, Anais Acad. Brasil. Ciencias 42, 645 (1970), p. 649,
Remark: “The support restrictions on u0(x), u1(x), F (x, t, 0) could probably be
removed by exploiting the hyperbolic character of the differential equation . . . ”.



5 Stable Structures, Hilbert Sectors, Phases

The mathematical investigation of the existence of solutions for the non-
linear (4.6) does not exhaust the problem of the physical interpretation of
the corresponding classical field theory. For infinitely extended systems, in
general not every solution is physically acceptable; one has to supplement the
analysis of the possible solutions by a list of mathematical properties which
the solutions must share in order to allow a physical interpretation.

For quantum field theory the realization of the basic mathematical struc-
ture which renders the theory physically sound is due to Wightman16 and it
is nowadays standard to accept as “solutions” of the quantum field equations
those which satisfy Wightman’s axioms. A similar problem arises in Statisti-
cal Mechanics and the basic structure has been clarified17. It is then natural
that a possible classical field theory associated to the (4.6) be defined by a
set S of solutions satisfying a few (additional) basic requirements. General
considerations suggest the following ones

I (Local structure) A possible classical field theory, or a physical world,
associated to the (4.6), is defined by a set S of configurations of the
classical field which are related by physically realizable operations (see the
analogous property discussed in Chap. 2 and the more precise discussion
below).

II (Stability) S is stable under time evolution
III (Finite energy-momentum) An energy-momentum density can be de-

fined in S and its infinite volume integral is finite for each element of S.

To be more precise we have to give a mathematical formalization of the
above requirements.
I. Local structure. The first condition is based on the physical considera-
tion that our measuring apparatuses extend over bounded regions of space
and therefore, starting from a given field configuration u, by physically re-
alizable operations we can modify it essentially only locally, i.e. we can
reach only those configurations which essentially differ from u only locally
16 R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That,

Benjamin-Cumming Pubbl. C. 1980.
17 See e.g. D. Ruelle, Statistical Mechanics, Benjamin 1969; R. Haag, Local Quan-

tum Theory, Springer-Verlag 1992.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 21–28
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(quasi local modifications). From a mathematical point of view, it is natural
to identify the concept of quasi local modification as a H1(IRs) ⊕ L2(IRs)
perturbation, i.e. given a solution u1(t), a solution u2(t) is a quasi local
modification of u1 if u1(t) − u2(t) ∈ H1(IRs) ⊕ L2(IRs) continuously in t,
briefly

u1(t) − u2(t) ∈ C0(H1(IRs) ⊕ L2(IRs), IR). (5.1)

We are thus led to introduce the following

Definition 5.1. Let F denote the family of solutions u(t) ∈ C0(Xloc, IR)
of (4. 6), a subset S ⊂ F defines a (essentially) local structure if (5.1)
holds ∀u1, u2 ∈ S.

II. Stability. Since time evolution is one of the possible realizable “op-
erations”, the above definition of local structure is physically meaning-
ful provided it is stable under time evolution, namely if ∀u(t) ∈ S also
uτ (t) ≡ u(t + τ) ∈ S, ∀τ ∈ IR. A local structure satisfying such stabil-
ity under time evolution will be called a sector. Thus, all the elements u
of the sector S identified by a reference element ū have the property that
δ(t) ≡ u(t) − ū(0) ∈ H1(IRs) ⊕ L2(IRs), ∀t ∈ IR.

In general S does not have a linear structure, nor that of the affine space
ū(0) + H1 ⊕ L2, since it is not guaranteed that for all δ0 ∈ H1 ⊕ L2, the
solution u(t) corresponding to the initial data ū(0) + δ0 will belong to S. A
sector with such a property is isomorphic to a Hilbert space and it is called
a Hilbert space sector (HSS).

The above definition of sectors is motivated by simple physical considera-
tions, but since it involves the knowledge of time evolution, it is not obvious
how to verify it a priori. The obvious questions are:

i) given a non-linear equation (4.6), can one a priori characterize the exis-
tence of non-trivial sectors associated to it? In particular, without having
to solve (4.6), under which conditions (if any) can initial data define a
sector and what is its explicit content?

ii) can one characterize the existence and the structure of Hilbert space sec-
tors, in the set of solutions of (4.6)?

We defer the discussion of condition III to the next section. Now, we
discuss the mathematical structures associated with the above definitions
and in particular to show that under general conditions they are not void.

It is not difficult to recognize the analogies with the stability theory,
which plays a crucial role in the theory of non-linear phenomena, in the finite
dimensional case.18

As it appears also in other fields, the concept of “locality” plays an im-
portant rôle for the infinite dimensional generalization of ideas developed
18 G. Sansone and R. Conti, Non-Linear Differential Equations, Pergamon Press

1964, Chap. IX.
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for finite dimensional systems. The emphasis on local structures is actually
the key, which makes possible (and physically meaningful) the treatment of
the dynamics of infinite degrees of freedom. Guided by these considerations,
we are led to consider the following stability problem: if two configurations
u1(0), u2(0) are “close” at t = 0, in the sense that they differ by a quasi
local perturbation, namely u1(0) − u2(0) ∈ H1(IRs) ⊕ L2(IRs), under which
conditions will they remain “close” at any later times (and, therefore, are
elements of a local structure)?

Every solution u(t) ∈ F defines a local structure (at worst that consist-
ing of just one element), but in general it does not define a sector. In the
latter case, the time evolution has a somewhat catastrophic character, since
it drastically changes the large distance behaviour of the initial data; as we
will discuss below this would mean a change from one physical world to an-
other and this makes a reasonable physical interpretation difficult. Clearly,
it is important to have general criteria for the existence of non-trivial stable
structures without having to know all the solutions of the non-linear equation.

For simplicity, we discuss the case in which the potential U(ϕ) belongs
to the following classes: it is an entire function in dimension s = 1 and it
belongs to the classes (4.10) and (4.11) in dimension s = 2, 3, respectively.
For a more general discussion see Ref. II.19 Then we have

Theorem 5.2. An initial data

u0 =
(
ϕ0
ψ0

)
∈ H1

loc ⊕ L2
loc.

with ϕ0 bounded, defines a non-trivial sector Hu0 iff

a) ψ0 ∈ L2(IRs), (5.2)
b) ∆ϕ0 − U ′(ϕ0) ≡ h ∈ H−1(IRs), (5.3)

(i.e. the Fourier transform h̃(k) satisfies
∫ |h̃(k)|2(1 + k2)−1dsk < ∞).

Actually, Hu0 is completely specified as the set of all solutions v(t) with
initial data of the form

v0 =
(
ϕ0 + χ
ψ0 + ζ

)
,

(
χ
ζ

)
∈ H1(IRs) ⊕ L2(IRs), (5.4)

i.e. Hu0 is the affine space u0 +H1(IRs) ⊕ L2(IRs) and, being isomorphic to
H1(IRs)⊕L2(IRs), carries a Hilbert space structure (Hilbert space sector).

19 C. Parenti, F. Strocchi and G. Velo, Phys. Lett. 62B, 83 (1976); Comm. Math.
Phys. 53, 65 (1977); Lectures at the Int. School of Math. Phys. Erice 1977, in
Invariant Wave Equations, G. Velo and A.S. Wightman eds., Springer-Verlag
1978.
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Proof. Let v(t) be a solution ∈ F and u0 ≡
(
ϕ0
ψ0

)
, then

δ(t) =
(
χ(t)
ζ(t)

)
≡ v(t) − u0 (5.5)

satisfies the following integral equation

δ(t) = W (t)δ0 + L(t) +
∫ t

0
ds W (t− s) g(δ(s)), (5.6)

where

L(t) = (W (t) − 1)v0 +
∫ t

0
ds W (t− s)

(
0

−U ′(ϕ0)

)
(5.7)

=

(
1−cos

√−∆t
−∆

sin
√−∆t√−∆

sin
√−∆t√−∆ cos

√−∆t− 1

)(
∆ϕ0 − U ′(ϕ0)

ψ0

)
≡
(
L1(t)
L2(t)

)
,

g(δ(s)) ≡
(

0
−G′

ϕ0
(χ(s))

)
, (5.8)

Gϕ0(χ) ≡ U(ϕ0 + χ) − U(ϕ0) − U ′(ϕ0)χ. (5.9)

The subscript ϕ0 and the explicit dependence on x through ϕ0 will often be
omitted in the sequel, using for brevity the notation G(x, χ(x)) or simply
G(χ). Furthermore, for brevity ∇zG(x, z)

∣∣
z=χ will be denoted by G′(χ).

The crux of the argument is that for ϕ0 bounded, briefly ∈L∞(IRs), for
the class of potentials under consideration, G(χ) satisfies

i) G′(χ) is globally Lipschitz continuous, namely for any ρ > 0, there exists
a constant C(ρ) such that for any χ1, χ2 ∈ H1(IRs), with ‖χi‖H1 ≤ ρ, i =
1, 2,

‖G′(χ2) −G′(χ1‖L2 ≤ C(ρ)‖χ2 − χ1‖H1 (5.10)

ii) G satisfies a lower bound condition, i.e. there exists a non-negative con-
stant γ, such that

G(x, z) ≥ −γ|z|2, ∀z ∈ IRn, x ∈ IRs (5.11)

(The proof of i) and ii) is given in Lemma 5.3 and 5.4, respectively).

Now, if i), ii) hold, since g(0) = 0, property i) implies that g(χ) ∈
H1(IRs) ⊕ L2(IRs) and therefore, since W (t) maps H1(IRs) ⊕ L2(IRs) into
itself continuously in t, (see Appendix A),

δ(t) ∈ C0(H1 ⊕ L2, IR) iff L(t) ∈ C0(H1 ⊕ L2, IR). (5.12)

The latter condition is equivalent to conditions a) and b), ((5.2), (5.3)), (see
Lemma 5.3 below).
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The proof that the sector is not empty and actually is a Hilbert space
sector amounts to proving that (5.6) has one and only one solution δ(t) ∈
C◦(H1 ⊕ L2, IR) for any initial data δ0 ∈ H1(IRs) ⊕ L2(IRs).

A simple important case is when u0 is a static solution of (4.6),

∆ϕ0 − U ′(ϕ0) = 0, ψ0 = 0. (5.13)

In this case L(t) = 0 and (5.6) has the same form of (4.6), for which the
Cauchy problem in H1 ⊕ L2 has been solved by Segal20.

In the general case L(t) �= 0 a generalization of Segal theorem (see Ap-
pendix D) gives existence and uniqueness in H1 ⊕ L2.

Lemma 5.3. For any ϕ0 ∈ L∞(IRs), the function G′(χ) defined through (5.9)
is globally Lipschitz continuous, (5.10).

Proof. From the identity

G′(χ(2)) − G′(χ(1)) = U ′(ϕ0 + χ(2)) − U ′(ϕ+ χ(1))

=
∫ 1

0
dσ

d

dσ
U ′(ϕ0 + χ(2) + σ(χ(2) − χ(1)))

=
∫ 1

0
dσ U ′′(ϕ0 + χ(2) + σ(χ(2) − χ(1)))(χ(2) − χ(1)),

(5.10) will follow if, for any ρ > 0, there exists a constant C(ρ) such that

sup
k=1,...n

‖
n∑
j=1

∂2U

∂zj∂zk
(ϕ0 + χ′)χj‖L2 ≤ C(ρ)‖χ‖H1 , (5.14)

for all χ′, χ ∈ H1 with ‖χ′‖ ≤ ρ, ‖χ‖ ≤ ρ.
For the class of potentials under consideration, the proof of (5.14) reduces

to the estimate of terms of the type (ϕ + χ(1))αχ(2) with χ(i) ∈ H1, i =
1, 2, α ∈ INn for s = 1, 2 and |α| ≤ 2 for s = 3. Now, since |a + b|p ≤
2p(|a|p + |b|p), ∀a, b ∈ IR, p ≥ 1, one has

‖(ϕ0+χ(1))αχ(2)‖L2 ≤ 2|α|{‖ |ϕ0||α| |χ(2)| ‖L2 +‖ |χ(1)||α| |χ(2)| ‖L2} (5.15)

and the first term on the r.h.s. is immediately estimated by

2|α|‖ |ϕ0||α| |χ(2)| ‖L2 ≤ A|α|(‖ϕ0‖L∞)|α| ‖χ(2)‖H1 . (5.16)

20 See footnote 12.
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The second term can be estimated by using the usual Hőlder and the
Sobolev inequalities21

2|α|‖ |χ(1)||α||χ(2)| ‖L2 ≤ 2|α|‖ |χ(1)| ‖|α|
L2(|α|+1)‖ |χ(2)| ‖L2(|α|+1)

≤ B|α|Cs(2|α| + 2)|α|+1‖χ(1)‖|α|
H1‖χ(2)‖H1 . (5.17)

Thus for s = 3 the proof is completed. For s = 1, 2 the convergence of the
sum over α is guaranteed by the properties which characterize the class of
potentials under consideration.

Lemma 5.4. For ϕ0 ∈ L∞(IRs), the lower bound condition for the poten-
tial, (4.13), implies that (5.11) holds.

Proof. Consider the identity

G(y) =
∫ 1

0
dσ(1 − σ)

d2

dσ2U(ϕ0 + σy) =
∫ 1

0
dσ(1 − σ)y2U ′′(ϕ0 + σy). (5.18)

Since U is of class C2, and ϕ0 is bounded, U ′′(ϕ0 +σy) is bounded below for
|y| ≤ 1, 0 ≤ σ ≤ 1; hence from (5.14) we get a lower bound for G of the form
of (5.11). On the other hand, for |y| ≥ 1, the lower bound condition (4.13),
gives

G(y) ≥ − {α+ β + β sup
x∈IRs

[|ϕ0(x)|2 + 2|ϕ0(x)| + U ′(ϕ0(x))]

+ max(0, sup
x∈IRs

U(ϕ0(x))}|y|2

Lemma 5.5. L(t) ∈ C0(H1 ⊕ L2, IR) iff a) and b) hold.

Proof. Sufficiency is easily seen in Fourier transform, by noticing that
cos |k|t−1, (1+ |k|) sin |k|t/|k| and (1+ |k|)2|k|−2(cos |k|t−1) are multipliers
of L2 continuous in t.
21 See e.g. L.R. Volevic and B.P. Paneyakh, Russian Math. Surveys 20, 1 (1965).

We list them for the convenience of the reader

s = 1, ‖f ;Lp(IR1)‖ ≤ C1(p) ‖f ;H1(IR1)‖, 2 ≤ p ≤ ∞, C1(p) = 0(1),
s = 2, ‖f ;Lp(IR2)‖ ≤ C2(p) ‖f ;H1(IR2)‖, 2 ≤ p < ∞, C2(p) = 0(p

1
2 ),

s = 3, ‖f ;Lp(IR3)‖ ≤ C3(p) ‖f ;H1(IR3)‖, 2 ≤ p ≤ 6, C3(p) = 0(1).

The same kind of estimates hold locally. In particular, for any cube K ⊂ IRs of
size R, they take the form

‖f ;Lp(K)‖ ≤ Cs,R(p) ‖f ;H1(K)‖,
with p ∈ [2,+∞] for s = 1, p ∈ [2,+∞[ for s = 2 and p ∈ [2, 6] for s = 3. The
constants Cs,R(p) depend only on the size R and exhibit the same dependence
on p as in the global case.
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For the necessity, we note that L2(t) ∈ C0(L2, IR) implies that also∫ t
0 dτL2(τ) ∈ C◦(L2, IR) and therefore

L1(t) +
∫ t

0
dτL2(τ) = −tψ̃ ∈ L2, i.e. ψ̃ ∈ L2.

Hence, |k|−1 sin |k|t ψ̃ ∈ C0(H1, IR) and the condition on L1(t) yields

f(k, t) = |k|−2(1 − cos |k|t)h̃(k) ∈ C◦(H1, IR), (5.19)

which in turn implies

(|k|−2 sin |k| − |k|−1)h̃ =
∫ t

0
dτf(k, τ) ∈ C◦(IR, H1). (5.20)

Finally, the two estimates

1
4 t

2|h̃(k)| ≤ |k|−2(cos |k|t− 1)|h̃|,

for |k| ≤ 2, t sufficiently small, and

1
2 |k|−1|h̃(k)| ≤ (|k|−2 sin |k| − |k|−1)|h̃|,

for |k| ≥ 2, imply |h̃|(1 + |k|2)−1/2 ∈ L2, by (5.19), (5.20).

Remark. The conclusions of the above theorem hold in the more general
case in which the condition ϕ0 ∈ L∞(IRs) is replaced by that of ϕ0 being
such that i) and ii) (5.10) and (5.11) hold; in this case ϕ0 is said to be a
regular point (or admissible) with respect to U . For the discussion of this
more general case see II.

The conditions (5.2), (5.3) characterize those initial data for which the
time derivative preserve some sort of localization; in particular (5.3) says that
the time derivative of the second component is H−1 localized.

A distinguished case for the application of the theorem is given by the
so-called static solutions, (5.13), since they define sectors containing a time
invariant element. Even more relevant is the case of sectors defined by con-
stant solutions corresponding to absolute minima of the potential; they are
analogs of the vacuum sectors of quantum field theory and we will call them
phases. The constant solutions corresponding to relative minima of U are
analogs of the false vacua22 and are classically stable (no tunnelling).

The solutions of (4.6) which correspond initial data u0 satisfying (5.2),
(5.3) will be briefly called generalized stationary solutions. In general, a sector
Hu0 identified by a generalized stationary solution does not contain static
solutions; a necessary and sufficient condition is that the elliptic equation
22 S. Coleman, Phys. Rev. D 15, 2929 (1977).
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∆χ−G′
ϕ0

(x, χ) = −h(ϕ0)

with h(ϕ0) ≡ ∆ϕ0 − U ′(ϕ0) ∈ H−1(IRs), has solutions χ ∈ H1(IRs).
The occurrence of disjoint Hilbert structures, stable under time evolution,

associated with generalized stationary solutions is a rather remarkable feature
in a fully non-linear problem without any approximation or linearization
being involved. In a certain sense the generalized stationary solutions play
a hierarchical role and exhibit some sort of stability property since they
keep their H1 ⊕ L2 perturbations steadily trapped around them. A non-
linear structure characterizes the labeling of the sectors by the generalized
stationary solutions, since the corresponding initial data do not have a linear
structure; however, within a given sector Hϕ0 all the initial data are described
by the affine space generated by ϕ0 through H1 ⊕ L2. In general, the time
evolution is not described by a linear operator on Hϕ0 .

The occurrence of Hilbert space sectors in the set solutions of non-linear
field equations allows to establish strong connections with quantum mechan-
ical structures and to recover the analog of quantum mechanical phenomena
like linear representations of groups, spontaneous symmetry breaking, pure
phases, superselection rules, etc., at the level of classical equations.23

It is worthwhile to remark that the emergence of disjoint stable structures
in the set of solutions of the non-linear equation (4.6) has been made possible
by the framework adopted in Chap. 4, in which the Cauchy data were not
restricted to be in H1 ⊕ L2. In that case one would have only gotten the
sector corresponding to the trivial vacuum ϕ0 = 0, ψ0 = 0.24

The physical relevance of such structures should be evident as a conse-
quence of the above discussion: a phase can in fact be interpreted as the
“world” of configurations which are physically accessible, starting from a
given ground state configuration. By definition of local structure, configura-
tions belonging to the same phase or “world” differ by quasi local perturba-
tions, i.e. they have the same large distance behaviour (for a more detailed
discussion see Appendix E); then, since we cannot modify the large distance
behaviour of our (reference or) ground state, nor can change the bound-
ary conditions of our physical world or “universe” by means of physically
realizable operations, different phases define disjoint physical worlds. The oc-
currence of disjoint physical worlds or phases is a typical feature of infinitely
extended systems, like e.g. those defined by the thermodynamical limit in
Statistical Mechanics, for which one cannot go from one phase to another by
essentially local operations.25

23 F. Strocchi, Lectures at the Workshop on Recent Advances in the Theory of Evo-
lution Equations, ICTP Trieste 1979, published in Topics in Functional Analysis
1980-81, Scuola Normale Superiore, Pisa 1982; contribution to the Workshop on
Hyperbolic Equations (1987), published in Rend. Sem. Mat. Univ. Pol. Torino,
Fascicolo speciale 1988, pp. 231-250.

24 See footnotes 11, 12.
25 The physical relevance of locality has been emphasized by R. Haag and D.

Kastler, J. Math. Phys. 5, 848 (1964) see also R. Haag, loc. cit. (see footnote 17).



6 Sectors with Energy-Momentum Density

We shall now discuss the requirement III of finite energy-momentum, briefly
mentioned in the previous section.

Clearly, the possibility of using solutions of non-linear field equations for
the description of physical systems requires that such solutions have finite
energy-momentum, and the localization properties of the physical measure-
ments requires the existence of an energy-momentum density.

The conventional expression of the energy density for the theory described
by (4.6) is

E(ϕ,ψ) = 1
2 [ (∇ϕ)2 + ψ2 ] + U(ϕ). (6.1)

However, if one adds any function of x, the (Hamilton) equations of motion
will remain unchanged and the new expression of the total energy is still
formally conserved.

This ambiguity is related to the fact that only energy differences have a
physical meaning, so that the concept of finite energy solutions must neces-
sarily make reference to some chosen reference solution. Such a fixing of the
energy scale will generally depend on the sector, since E(ϕ,ψ) is locally but in
general not globally integrable. The fixing of the energy scale corresponds to
the so-called infinite volume renormalization which occurs in the treatment
of infinitely extended systems.

In the sequel we shall denote by Hϕ0 the Hilbert space sector (HSS)
defined by a ϕ0 ∈ L∞(IRs) satisfying (5.3), taking always for granted that
ψ0 ∈ L2(IRs). Thus, given such an Hilbert space sector one is led to define a
renormalized energy density (without loss of generality we can take ψ0 = 0)

Eren(ϕ,ψ) ≡ E(ϕ,ψ) − E(ϕ0, 0)

= 1
2 [ (∇χ)2 + ψ2 ] + ∇χ∇ϕ0 +G(χ) + U ′(ϕ0)χ, (6.2)

where χ = ϕ− ϕ0 and G(χ) is defined by (5.9).
The background subtraction is, however, not enough for assuring that

the renormalized density is globally integrable. The most which can be said,
without additional assumptions, is that Eren is integrable if χ is of compact

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 29–31
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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support and that it identifies an energy functional defined on the whole HSS
by a suitable extension26. In general, however, the so extended functional will
not be the integral over a density and therefore the concept of local energy
is problematic.

Such a difficulty does not arise if the HSS is defined by a ϕ0 ∈ L∞(IRs)
with ∇ϕ0 ∈ L2(IRs).

Proposition 6.1. 27Given a Hilbert space sector defined by a ϕ0 ∈L∞(IRs),
a (renormalized) energy density can be defined on it with a convergent infinite
volume integral if

∇ϕ0 ∈ L2(IRs). (6.3)

The condition (6.3) is actually necessary for the convergence of the infinite
volume integral of the momentum density.

Proof. By Lemma 5.3 G′(χ) is globally Lipschitz continuous and therefore
G′(χ) ∈ L2(IRs),∀χ ∈ H1(IRs). Now, from the identity

G(χ1) −G(χ2) =
∫ 1

0
dσ

d

dσ
G(χ1 + σ(χ2 − χ1)) =

=
∫ 1

0
dσ(χ2 − χ1)G′(χ1 + σ(χ2 − χ1)),

one has
∫
dsx|G(χ1) −G(χ2)| ≤ sup

0≤σ≤1
‖G′(χ1 + σ(χ2 − χ1))‖L2‖χ2 − χ1‖L2

and, since G(0) = 0, G(χ) ∈ L1(IRs).
On the other hand,

∇χ∇ϕ0 + U ′(ϕ0)χ = ∇(χ∇ϕ0) − h(ϕ0)χ

and the second term on the r.h.s. is integrable since h ∈ H−1(IRs), χ ∈
H1(IRs). By (6.3), χ∇ϕ0 ∈ L1(IRs) and therefore the infinite volume limit
of the integral of the first term vanishes. The other terms in (6.1) are clearly
integrable.

For the proof of the last statement, without loss of generality we can
take ψ0 = 0. Then the background momentum subtraction vanishes and the
renormalized momentum density is the conventional one:

Pren(ϕ,ψ) = ψ∇ϕ. (6.4)

26 Ref. II quoted in footnote 4.
27 See Ref. II.
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Since ψ may be an arbitrary element of L2(IRs), Pren is integrable provided
∇ϕ ∈ L2(IRs), i.e. ∇ϕ0 ∈ L2(IRs), since χ = ϕ− ϕ0 ∈ H1(IRs).

It is worthwhile to remark that ∇ϕ0 ∈ L2 implies in turn that ∇ϕ ∈
L2(IR), for all the elements of the corresponding HSS. A HSS defined by a
ϕ0 ∈ L∞(IRs) with ∇ϕ0 ∈ L2(IRs) will be called a Hilbert space sector with
energy-momentum density, or briefly a physical sector.

It is not difficult to show28 that the infinite volume integrals of the renor-
malized energy-momentum densities define conserved quantities and that the
corresponding functionals are continuous in the Hilbert space topology of the
HSS.

A related question is the stability of a sector under external perturbations
and an important role is played by the energy being bounded from below.
Now, even if the potential is bounded from below, in general the renormalized
energy may not be so.

Proposition 6.2. The renormalized energy is bounded from below in the HSS
sectors defined by absolute minima of the potential (vacuum sectors or phases)

Proof. In fact, in (6.2) ∇ϕ0 = 0 and, since ϕ0 is an absolute minimum

G(χ) + U ′(ϕ0)χ = U(ϕ0 + χ) − U(ϕ0) ≥ 0.

The energy is not bounded from below in the sectors defined by relative
minima of the potential (false vacuum sectors) and one expects instability
against external field perturbations.

In conclusion the set of solutions of the non-linear field equation (4.6)
which have a reasonable physical interpretation are those belonging to Hilbert
space sectors with energy-momentum density, (called physical sectors), and
a distinguished role is played by the vacuum sectors or phases. (For time-
independent solutions defining physical sectors, see Appendix E). The anal-
ogy with the corresponding structures in quantum field theory29 is rather
remarkable.

28 See Ref. II.
29 See references in footnotes 16 and 17.



7 An Improved Noether Theorem.
Spontaneous Symmetry Breaking

The existence of sectors, i.e. of “closed worlds” in the set of solutions of
the non-linear equation (4.6), provides the mathematical and physical basis
for the mechanism of spontaneous symmetry breaking briefly discussed in
Chap. 2. We can now understand the relation between the Noether theo-
rem, the existence of conserved currents and the occurrence of spontaneous
symmetry breaking which, among other things, imply the lack of existence
of the corresponding charges. As shown by the following Proposition, the
mechanism of spontaneous symmetry breaking is related to the instability of
a closed world under a symmetry operation.

Proposition 7.1. 30Let G denote the group of internal symmetries of (4.6).
Then

1) G maps sectors into sectors and HSS into HSS

G : Hϕ → Hg(ϕ), ∀g ∈ G,

giving rise to orbits of sectors and of HSS.
2) Each HSS Hϕ determines a subgroup Gϕ of G such that

Gϕ : Hϕ → Hϕ.

Gϕ is called the stability group of Hϕ and Hϕ is the carrier of a repre-
sentation of its stability group.

3) A necessary and sufficient condition for Gϕ being the stability group of Hϕ

is that there exists one element ϕ̄ ∈ Hϕ such that

Gϕϕ̄ ∈ Hϕ. (7.1)

Furthermore, if Gϕϕ̄ = ϕ̄ and λg = 1,∀g ∈ Gϕ, then Gϕ is represented by
unitary operators in Hϕ.

30 Ref. II.
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Proof. By the characterization of internal symmetries given by (3.6), (3.7),
u′(t) − u(t) ∈ C0(IR, H1 ⊕ L2) implies

g(ϕ′(t)) − g(ϕ(t)) = Ag(ϕ′(t) − ϕ(t)) ∈ C0(H1 ⊕ L2, IR),

so that sectors are mapped into sectors.
Furthermore, if u0 = {ϕ0, ψ0} with ϕ0 ∈ L∞(IRs), ψ0 ∈ L2(IRs) satisfies

condition b) of Theorem 5.2, it follows that Agϕ0 + ag ∈ L∞(IRs), Agψ0 ∈
L2(IRs) and, by (3.6), (3.8),

∆g(ϕ0) − U ′(g(ϕ0)) = Ag(∆ϕ0 − U ′(ϕ0)) ∈ H−1(IRs),

i.e. g maps HSS into HSS.
Finally, for any element ϕ of Hϕ0 , putting χ = ϕ− ϕ0, one has

g(ϕ) − ϕ0 = Agχ+ g(ϕ0) − ϕ0 (7.2)

and since for any g ∈ Gϕ0 , g(ϕ0) − ϕ0 ∈ H1(IRs) ⊕ L2(IRs), by (7.2) the
mapping g induces an affine mapping on H1 ⊕ L2 to which Hϕ0 is naturally
identified, by Theorem 5.2.

Conversely, by arguing as for (7.2) if ∃ϕ̄ ∈ Hϕ0 such that g(ϕ̄) − ϕ̄ ∈
H1 ⊕ L2 so does g(ϕ) − ϕ0, i.e. g ∈ Gϕ.

The other statements are obvious.

Since, as discussed before, different HHS define “disjoint physical worlds”,
an internal symmetry of the field equation (4.6) gives rise to a symmetry of
the physical world described by the Hilbert sector Hϕ only if it maps Hϕ into
Hϕ. Otherwise the symmetry is spontaneously broken.

As discussed in the Introduction, if Hϕ is not stable under G, its elements
cannot be classified in terms of irreducible representations of G. It is now
clear what distinguishes the infinite dimensional case with respect to the
finite dimensional one. In the latter case, degenerate ground states related
by a continuous symmetry, cannot be separated by potential barriers and
one can move from one to the other by physically realizable operations. In
the infinite dimensional case, degenerate ground states characterize different
large distance behaviours of the field configurations, so that, even if they
are related by a continuous symmetry, they cannot be related by physically
realizable operations, since the latter ones must both involve finite energy
and be essentially localized.

When the field equations can be derived by a Lagrangean, the link between
the invariance group of the Lagrangean and the existence of conservation laws
is provided by the classical Noether’s theorem. The existence of a continuity
equation or a local conservation law, however, does not in general imply the
existence of a constant of motion or conserved charge, since, first of all, the
integral which defines the charge

Qi =
∫
d3x J i0(x)

may not converge.
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Thus, the standard accounts of the Noether theorem implicitly apply to
the solutions which decrease sufficiently fast at infinity, i.e. essentially to the
“trivial vacuum” sector Hϕ=0.

A criterium for the existence of a conserved charge implied by a continuity
equation, in the general case when the solutions do not belong to H1 ⊕ L2,
is provided by the following improvement of Noether theorem.31 Again the
structure of Hilbert space sectors provides a simple solution of the problem.

For simplicity, we consider the case of real fields and of linear transfor-
mations (ag = 0), the generalization being straightforward.

Theorem 7.2. Let G be a N-parameter continuous (Lie) group of internal
symmetries of the field equation (4.6) (or of the Lagrangean from which they
are derived), then there exist N currents J iµ(u(x, t)) ≡ J iµ(x, t), which obey
the continuity equation

∂µJ iµ(x, t) = 0, i = 1, ...N (7.3)

(local conservation law).
Given a physical HSS Hϕ0 , a one-parameter subgroup G(j) ⊂ G gives

rise to a constant of motion or a conserved Noether charge

Qj(u(t)) = Qj(u(0)) (7.4)

Qj(u(t)) ≡
∫
dsx Jj0 (u(x, t)) (7.5)

for all solutions u(x, t) ∈ Hϕ0 , iff G(j) is a subgroup of the stability group
Gϕ0 of Hϕ0 .

Proof. We omit the proof of the first part, which is standard and can be
found in any textbook of classical field theory (see e.g. the references given
for Theorem 3.2).

For the second part, we start by discussing the convergence of the integral
(7.5). The stability of Hϕ0 under G(j) is equivalent to its stability under
infinitesimal transformations of G(j)

ϕ → ϕ+ ε(j) δ(j)ϕ, δ(j)ϕ =
∂

∂ε(j)
Agεϕ|ε(j)=0,

namely to the condition δ(j)ϕ ∈ H1(IRs).
Now, Jj0 (ϕ,ψ) = ψ δ(j)ϕ and therefore, since ψ may be an arbitrary

element of L2(IRs), Jj0 ∈ L1(IRs) iff δ(j)ϕ ∈ L2(IRs). On the other hand, for
a physical Hilbert space sector (see Chap. 6), ∇ϕ ∈ L2(IRs), which implies
∇Ag(ϕ) = Ag∇ϕ ∈ L2(IRs) and therefore ∇δ(j)ϕ = δ(j)∇ϕ ∈ L2(IRs).
Hence, for a physical sector δ(j)ϕ ∈ L2(IRs) is equivalent to δ(j)ϕ ∈ H1(IRs).

For the time independence of the charge integral we recall that it is related
to the continuity equation of the current J iµ by the following argument. One
31 F. Strocchi, loc.cit. (see footnote 23).
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integrates ∂µJ iµ(x, t) = 0 over the space-time region V ≡ {x ∈ V = a bounded
space volume, t ∈ [0, τ ]} and uses Gauss theorem to get

0 =
∫

V
dsx dt ∂µJ iµ(x, t) = QiV (τ) −QiV (0) + ΦS(J (i)), (7.6)

where ΦS(J) is the flux of J (i) = ∇ϕ δ(i)ϕ over the boundary surface
S ≡ {x ∈ ∂V, t ∈ [0, τ ]}. The time independence of the charge integral is
then equivalent to the vanishing of the flux ΦS(J) in the limit V → ∞. Since
J (j) = ∇ϕ δjϕ = ∇χ (δjϕ0 + δjχ) the flux vanishes ∀ ∇χ ∈ L2 iff δjϕ0 = 0.

Remark 1. It is not difficult to find the analog of the above theorem in
the more general case of non-internal symmetries, which commute with time
evolution.

Remark 2. The notion of physical Hilbert space sector clarifies the condi-
tions for the existence of a conserved Noether charge, a point which seems to
have been neglected in the standard accounts of Noether theorem in classical
field theory.32

As shown by the above discussion, in general the continuity equation for
J iµ may fail to give rise to a conserved charge by the following two mecha-
nisms.

1) in the limit V → ∞, the flux ΦS(J) vanishes, but QV does not converge.
This is the case of the standard spontaneous symmetry breaking and it is
the strict analogue of the symmetry breaking a la Goldstone-Nambu.33

2) The flux ΦS(J) does not vanish as V → ∞; this is the analogue of the
symmetry breaking induced by boundary effects or the symmetry breaking
a la Higgs34.

For physical HSS associated to the non-linear equation (4.6), the possi-
bility 2) cannot arise since ∇ϕ ∈ L2(IRs) and, if the symmetry in question
leaves the physical HSS stable, δ(i)ϕ ∈ H1(IRs) so that ∇ϕδ(i) ϕ ∈ L1(IRs)
and the flux vanishes as V → ∞.

A crucial role in the above analysis is played by the condition of finite
energy-momentum, which in this case requires ∇ϕ0 ∈ L2(IRs). This is no
32 See e.g. the references in footnote 9.
33 J. Goldstone, Nuovo Cim. 19, 154 (1961); J. Goldstone, A. Salam and S. Wein-

berg, Phys. Rev. 127, 965 (1962); Y. Nambu and G. Jona-Lasinio, Phys. Rev.
122, 345 (1961); 124, 246 (1961).

For a simple account see F. Strocchi, Elements of Quantum Mechanics of
Infinite Systems, World Scientific 1985.

34 P.W. Higgs, Phys. Lett. 12, 132 (1964); T.W. Kibble, Proc. Int. Conf. Elemen-
tary Particles, Oxford, Oxford Univ. Press 1965; G.S. Guralnik, C.R. Hagen and
T.W. Kibble, in Advances in Particle Physics Vol. 2, R.L. Cool and R.E. Mar-
shak eds., Interscience New York 1968 and refs. therein. See also the references
in the footnote below.
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longer the case in gauge field theories, since the energy-momentum density
involves the covariant derivative (∇ + A)ϕ (where A denotes the gauge po-
tential), rather than ∇ϕ. This opens the way to the Higgs mechanism of
symmetry breaking for which the boundary effects give rise to a charge leak-
ing at infinity35.

35 G. Morchio and F. Strocchi, in Fundamental Problems of Gauge Field Theory, G.
Velo and A.S. Wightman eds. Plenum 1986; F. Strocchi, in Fundamental Aspects
of Quantum Theory, V. Gorini and A. Frigerio eds., Plenum 1986.



8 Examples

1) Non-linear Scalar Field in One Space Dimension

The model describes the simplest non-linear field theory and it can be re-
garded as a prototype of field theories in one space dimension (s = 1). The
model can also be interpreted as a non-linear generalization of the wave equa-
tion. The interest of the model is that, even at the classical level, it has stable
solutions with a possible particle interpretation36.

The model is defined by the potential

U = − 1
2m

2ϕ2 + 1
4λϕ

4 = 1
4λ(ϕ2 − µ2)2 − 1

4λµ
4, µ2 ≡ m2/λ, (8.1)

and therefore the equations of motion read

�ϕ = −λϕ(ϕ2 − µ2). (8.2)

i) Vacuum state solutions
The simplest solutions are the ground state solutions, invariant under space
and time translations, i.e. ϕ = const. If the field ϕ takes values in IR, there
are only three possibilities

ϕ±
0 = ±µ, ϕ0 = 0. (8.3)

By the discussion of Chaps. 5–7, ϕ±
0 define disjoint Hilbert space sectors

H±, for which an energy-momentum density can be defined and for which the
energy is bounded below. The other constant solution ϕ0 = 0, corresponding
to the so-called trivial vacuum sector, still defines a Hilbert space sector
with energy-momentum density, but the energy is not bounded below and
therefore in this case the sector is not energetically stable under external
perturbations (see Chap. 7). This would be the only vacuum state solution
available in Segal’s approach.

If the field ϕ takes values in IRn, n > 1, the internal symmetry group is
the continuous group G of transformations (3.6), (3.7) with λ = 1, a = 0. In
this case, besides the trivial vacuum solution ϕ0 = 0, the non-trivial vacuum
36 J. Goldstone and R. Jackiw, Phys. Rev. D11, 1486 (1975). See also R. Rajara-

man, Solitons and Instantons, North-Holland 1982 and references therein.
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solutions are given by the points of the orbit

{ϕg0 ≡ Agϕ̄0, g ∈ G, ϕ̄2
0 = µ2}. (8.4)

For n = 1, the internal symmetry group is the discrete group

Z2 : ϕ → −ϕ.
Clearly, in all cases, the internal symmetry group is unbroken in the trivial

vacuum sector H0, but it is spontaneously broken in each “pure phase” Hg,
defined by ϕg0.

ii) Time independent solutions defining physical Hilbert space sectors. Kinks
Another interesting class are the time independent solutions, which satisfy

(∂x)2ϕ = λϕ(ϕ2 − µ2). (8.5)

This implies
∂x( 1

2ϕ
2
x − 1

4λ(ϕ2 − µ2)2) = 0, ϕx ≡ ∂x ϕ,

i.e.
1
2ϕ

2
x = 1

4λ(ϕ2 − µ2)2 + C, C = constant. (8.6)

For simplicity, we consider the case in which ϕ takes values in IR, leaving the
straightforward generalization as an exercise.

The discussion of the solutions of (8.5), as given in the literature, (see
e.g. the references in the previous footnote), is done under the condition that
they have finite energy when the potential is so renormalized that it vanishes
at its absolute minimum. This means that

1
2 (∇ϕ)2 + 1

4λ(ϕ2 − µ2)2 ∈ L1.

By the discussion of Chap. 5, this appears as too restrictive, since it does not
consider the possibility of energy renormalization, (6.2), and in particular it
crucially depends on the overall scale of the potential (it also excludes the
trivial vacuum solution ϕ0 = 0!). For these reasons we prefer to leave open
the energy renormalization.

To simplify the discussion we will only assume that ϕ has (bounded) limits
ϕ(±∞), when x → ±∞ (regularity at infinity). Then, quite generally, since
U is by assumption of class C2, also U ′(ϕ) has bounded limits as x → ±∞
and (8.5) implies that d2ϕ/dx2 also does. On the other hand, for any test
function f of compact support, with

∫
f(x)dx = 1,

lim
a→±∞(∆ϕ)(x+ a) = lim

a→±∞

∫
∆ϕ(x+ a) f(x)dx

= lim
a→±∞

∫
ϕ(x+ a)∆f(x)dx = ϕ(±∞)

∫
∆f(x) dx = 0.
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Then, (8.5) implies
U ′(ϕ(±∞)) = 0. (8.7)

Now, for physical sectors ∇ϕ ∈ L2, so that the constant C in (8.6) must
vanish and one has

ϕ(x) = ε(x)
√
λ/2 (ϕ2 − µ2), (8.8)

with ε(x)2 = 1. Actually, (8.5) implies that ε(x) is independent of x, i.e.
ε(x) = ±1. Equation (8.8) can easily be integrated and it gives

ϕx = ∓µ tanh(
√
λ/2µ(x− a)), (8.9)

where a is an integration constant.
The plus/minus sign gives the so-called kink/anti-kink solution, respec-

tively. Such solutions do not vanish at x → ±∞, but, nevertheless, they have
some kind of localization, since they significantly differ from the constants
ϕ+

0 , ϕ
−
0 only in a region of width (

√
λµ)−1. They are not local perturbations

of the ground state solutions ϕ±
0 and in fact they define different Hilbert

sectors Hk,Hk̄. The corresponding renormalized energy momentum density
is defined by

Eren = 1
2 (∇ϕ)2 + U(ϕ) + 1

4λµ
4 = 1

2 (∇ϕ)2 + 1
4λ(ϕ2 − µ2)2

and it is localized around the “centre of mass” of the kink, namely x = a. (It
is instructive to draw the shape of the kink solution). The total renormalized
energy is

Ek = 2
3

√
2m3/λ (8.10)

and it clearly exhibits the non-perturbative nature of the kink solution.

iii) Moving kink. Particle behaviour
Since (8.2) is invariant under a Lorentz transformation

x → x′ = (x− vt)/
√

1 − v2, t → t′ = (t− vx)/
√

1 − v2,

(where the velocity of light c is put = 1) if ϕ(x, t) is a solution, also is
ϕ′(x, t) ≡ ϕ(x′, t′). Thus, from the static solutions (8.9) we can generate
time dependent ones (for simplicity we put a = 0)

ϕ(x, t) = ∓µ tanh(
√
λ/2µ(x− vt)/

√
1 − v2), v2 < 1. (8.11)

The energy-momentum density is localized around the point x = vt (“center
of mass” of the kink), which moves with velocity v (moving kink solution).

Clearly, ϕ(x, t)−ϕ(x, 0) ∈ C◦(H1, IR), i.e. ϕ(x, t) defines a sector. Further-
more ϕ(x, 0) ∈ L∞(IR), ψ(x, 0) = ϕ̇(x, 0) ∈ L2(IR) and obviously condition
b) of Theorem 5.1 is satisfied; then (ϕ(x, 0), ψ(x, 0)) defines a Hilbert space
sector.
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This implies the stability of such solutions under H1 ⊕ L2 perturbations
(see Chap. 5). This settles the problem of stability of the kink sector37 and,
thanks to Theorem 5.1, the proof does not involve expansions or lineariza-
tions. It is not difficult to see that the static kink solution, corresponding
to v = 0 in (8.11), belongs to the same sector defined by the corresponding
moving kink solution.

From a physical point of view (energy-momentum localization and sta-
bility), the kink is a candidate to describe particle-like excitations associated
with (8.2). In fact, in the past this feature has motivated attempts to use
such kink-like solution as a non-perturbative semi-classical approach to the
descriptions of baryons in quantum field theory38.

2) The Sine-Gordon Equation

The Sine-Gordon equation is

�ϕ = −g sinϕ, (8.12)

where ϕ(x, t) is a scalar field in one space dimension. It is of great interest
in various fields of theoretical physics, like propagation of crystal dislocation,
magnetic flux in Josephson lines, Bloch wall motion in magnetic crystals,
fermion bosonization in the Thirring model of elementary particle interac-
tions, etc.39

i) Static solutions
The simplest static solutions are the constants

ϕ = πn, n ∈ ZZ. (8.13)

They all define disjoint Hilbert space sectors and for n even correspond to
absolute minima of the potential

U = g(1 − cosϕ). (8.14)

In this case the energy is bounded below in the corresponding Hilbert sectors.
37 See e.g. R. Rajaraman, Phys. Rep. 21, 227 (1975), especially Chap. 3.2.
38 R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D10, 4130 (1974); J.

Goldstone and R. Jackiw, Phys. Rev. D11, 1486 (1975); for a rich collection
of important papers see C. Rebbi and G. Soliani, Solitons and Particles, World
Scientific 1984.

39 See A. Barone, F. Esposito and C.J. Magee, Theory and Applications of the Sine-
Gordon Equation, in Riv. Nuovo Cim. 1, 227 (1971); A.C. Scott, F.Y. Chiu, and
D.W. Mclaughlin, Proc.I.E.E.E. 61, 1443 (1973); G.B. Whitham, Linear and
Non-Linear Waves, J. Wiley 1974; S. Coleman, Phys. Rev. D11, 2088 (1975);
S. Coleman, Aspects of Symmetry, Cambridge Univ. Press 1985; J. Fröhlich, in
Invariant Wave Equations, G. Velo and A.S. Wightman eds., Springer-Verlag
1977.
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The internal symmetries of (8.12) are

ϕ → ϕ+ 2πn

and
ϕ → −ϕ

They are broken in the sectors Hπn defined by the vacuum solutions (8.13).
To determine other non-trivial static solutions we proceed as in Example

1) The equation
∆ϕ = g sinϕ, (8.15)

implies
d

dx
[ 1

2 ϕ
2
x + g cosϕ] = 0, (8.16)

i.e.
1
2 ϕ

2
x + g cosϕ = C, C = constant. (8.17)

As in the previous example, we prefer to leave open the energy renormal-
ization and we classify all the solutions of (8.17) which have (bounded) lim-
its ϕ±∞ when x → ±∞. By the same argument as before, one finds that
sinϕ±∞ = 0, i.e.

ϕ±∞ = πn±, n± ∈ ZZ (8.18)

and, from the condition ∇ϕ ∈ L2, one gets

n+ = n− mod 2π, C = εg,

with ε = 1 for n+ = even, ε = −1 for n+ = odd. Actually, the case n+ = odd
is ruled out by (8.17), which requires C − g cosϕ = 1

2 ϕ
2
x ≥ 0. Then

ϕx = ε(x)
√

2g
√

1 − cosϕ, ε(x)2 = 1 (8.19)

and again ε(x) = ±1, by (8.16).
Equation (8.17) can be easily integrated and it gives

ϕ(x) = ±4 tan−1[exp
√
g(x− a)] ≡ ϕs/s̄ (8.20)

with a an integration constant. Corresponding to the + or – sign, the solution
is called soliton or anti-soliton.

ii) Moving soliton solutions
As before, moving soliton (or anti-soliton) solutions can be obtained by
Lorentz transformations, i.e. by replacing x − a in (8.20) by (x − a −
vt)/

√
1 − v2. A remarkable property of solitons with respect to kinks is that

they are unaltered by scattering. The literature on solitons is vast (see e.g.
the references in the previous footnote).

It is not difficult to see that ϕs and ϕs̄ define different Hilbert sectors
Hs,Hs̄ (also different from the Hπn, defined by the vacuum solution (8.13)).
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The mechanism of SSB does not only provide a general strategy for unifying
the description of apparently different systems, but it also provide informa-
tion on the energy spectrum of an infinite dimensional system, by means of
the so-called Goldstone theorem,40 according to which to each broken gen-
erator T of a continuous symmetry there corresponds a massless mode, i.e.
a free wave. The quantum version of such a statement has been turned into
a theorem,41 whereas, as far as we know, no analogous theorem has been
proved for classical (infinite dimensional) systems and the standard accounts
seem to rely on heuristic arguments.

The standard heuristic argument, which actually goes back to Goldstone,
considers as a prototype the nonlinear equation (3.1)

�ϕ+ U ′(ϕ) = 0,

where the multi-component real field ϕ transforms as a linear representation
of a Lie group G and the potential U is invariant under the transformations
of G. This implies that for the generator Tα one has

0 = δα U(ϕ) = U ′
j(ϕ)Tαjk ϕk, ∀ϕ (9.1)

and therefore the derivative of this equation at ϕ = ϕ gives

U ′′
jk (Tαϕ)k = 0. (9.2)

Thus, in an expansion of the potential around ϕ, the quadratic term, which
has the meaning of a mass term, has a zero eigenvalue in the direction Tαϕ.
This is taken as evidence that there is a massless mode.

In our opinion, the argument is not conclusive since it involves an expan-
sion and one should in some way control the effect of higher order terms;
moreover, it is not clear that there are (physically meaningful) solutions in
the direction of Tα ϕ for all times, so that for them the quadratic term dis-
appears. In any case, the argument does not show that there are massless
solutions as in the quantum case.
40 J. Goldstone, Nuovo Cimento 19, 154 (1961)
41 J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962); J. Swieca,

Goldstone’s theorem and related topics, Cargèse lectures 1969
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Another heuristic argument appeals to the finite dimensional analogy,
where the motion of a particle along the bottom of the potential, i.e. along
the orbit {gα(λ)ϕ}, where gα(λ), λ ∈ IR, is the one-parameter subgroup gen-
erated by Tα, does not feel the potential, since U ′(gαϕ) = 0, and therefore
the motion is like a free motion. This is considered as evidence that, corre-
spondingly, in the infinite dimensional case there are massless modes. Again
the argument does not appear complete, since it is not at all clear that there
are physically meaningful solutions, i.e. belonging to the physical sector of ϕ
and therefore of the form ϕ=ϕ+χ, χ∈H1(IRs), s = space dimension, of zero
mass.

We propose a version42 of the Goldstone theorem for classical fields as a
mathematically acceptable substitute and correction of the above heuristic
arguments.

We consider the case of space dimension s = 3, unless otherwise stated
and for simplicity the case of compact semi-simple Lie group G of internal
symmetries. The potential is assumed to be of class C3.

The argument relies on some basic fact on the asymptotic solutions of (4.6)
which we briefly recall for the convenience of the reader.

Given a solution u(t) of the integral equation (4.6), its asymptotic time
(t → ±∞) behaviour defines the so-called scattering configurations or asymp-
totic states u±(t) associated with u(t).

The behaviour of f(u) near u = 0 plays a crucial role for such asymptotic
limits and if f(u)−f ′(0)u vanishes to a sufficiently high degree, e.g. as O(u3),
i) such limits u±(t) exist and ii) their time evolution is that corresponding
to the differential operator � + f ′(0), i.e.

u±(t′) = W(t′ − t)u±(t),

where W(t) denotes the propagator corresponding to the differential operator
� + f ′(0), (if f ′(0) = 0,W(t) is the free wave equation propagator W (t)
defined in Chap. 4).

The mathematical theory of scattering for the nonlinear wave equation is
well developed and it is beautifully reviewed by W. Strauss, Non-linear Wave
Equations, Am. Math. Soc. 1989.

The mathematical problem of the existence of the scattering configura-
tions (the so-called scattering theory) is to guarantee the well definiteness of
the Yang-Feldman equations

u±(t) = u(t) +
∫ ±∞

t

dsU0(t− s) f(u(s)), (9.3)

which express u±(t) in terms of the solution u(t) and of the propagator W.
The Yang-Feldman equations can be interpreted as a form of the integral (4.6)
with initial data given at t = ±∞, respectively.
42 F. Strocchi, Phys. Lett. A267, 40 (2000).



9 The Goldstone Theorem 47

The problem of the existence of the asymptotic limits reduces to estimat-
ing the asymptotic time decay of the nonlinear term f(u(s)) such that the
integrals on the r.h.s. of the Yang-Feldman equations exist. This can be done
by using the Basic L∞ estimates on the time decay of the free solutions (see
Strauss’ book quoted above, pp. 5-6).

For small amplitude solutions, i.e. for initial data small in some norm,
e.g. of the form εu for fixed u, the asymptotic limits are completely governed
by the behaviour of f(u) near u = 0.

We can now state a classical counterpart of the Goldstone’s theorem.

Theorem 9.1. Let G be an N -parameter continuous (Lie) group of internal
symmetries of the nonlinear equation (3.1) and Hϕ the Hilbert Space Sector
(HSS), defined by an absolute minimum ϕ of the potential U , where G is
spontaneously broken down to Gϕ, the stability group of ϕ.

Then, for any generator Tα, such that Tαϕ �= 0,

i) there are scattering configurations, associated to solutions belonging to
the sector Hϕ, which are solutions of the free wave equation (Goldstone
modes).

ii) for any sphere ΩR of radius R and any time T there are solutions
ϕαG(x, t) �= ϕ, ϕαG ∈ Hϕ, whose propagation in ΩR in the time interval
t ∈ [0, T ] is that of free waves (Goldstone-like solutions).

Proof.

i) For solutions ϕ ∈ Hϕ, i.e. of the form ϕ = ϕ+χ, χ ∈ H1, the conservation
of the current jµ = (∂µ ϕ)Tαϕ, associated to the generator Tα, (without
loss of generality we can take ϕ real and Tα antisymmetric), reads

0 = ∂µ j
µ = �χi T

α
ij ϕj = �(χi Tαij ϕ) + �χi T

α
ij χj , (9.4)

and by the invariance of the potential, the second term can be written as
U ′(ϕ+χ)i Tαij ϕj . (In the quantum case, thanks to the vacuum expectation
value, one has only the analogue of the first term and the proof gets
simpler).
Now, for small amplitude solutions χ, the asymptotic limits are governed
by the behaviour of U ′(χ) ≡ U ′(ϕ+ χ) near χ = 0 and in this region, by
the invariance of the potential, one has

U ′
i(χ) (Tα ϕ)i = U ′′′

ijk(ϕ)χjχk (Tα ϕ)i +O(χ3).

This implies that the small amplitude mode χα ≡ χi (Tα ϕ)i satisfies a
nonlinear wave equation with an effective potential which vanishes to a
degree p ≥ 3 near χ = 0. Thus, the large time decay of the nonlinear term
appearing in the corresponding Yang-Feldman equation is not worse than
in the case of a wave equation with potential vanishing with degree p ≥ 3
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near the origin (other massive modes occurring in U ′ have faster decay
properties). Then, one can appeal to standard results43 to obtain the
existence of the asymptotic limits χα±(t) satisfying the free wave equation.

ii) The existence of free waves ϕ(x, t) = ϕ + χ(x, t) within a given region
ΩR in the time interval [0, T ] is equivalent to U ′(ϕ+ χ(x, t)) = 0, ∀x ∈
ΩR, t ∈ [0, T ], so that if the absolute minima of the potential consist of
a single orbit ϕ + χ(x, t) = exp (hα(x, t)Tα)ϕ, hα(x, t) real ∈ H1 and
for solutions associated to a given generator Tα, with Tαϕ �= 0, one has
solutions of the form

ϕα(x, t) = eh(x,t)Tα

ϕ.

Now, the wave equation �ϕ(x, t) = 0, requires

�h(x, t) = 0, (∂µ h ∂µ h)(x, t) = 0, (9.5)

(since Tα and (Tα)2 have different symmetry properties).
This implies that any C2 function of h also satisfies (9.5) and in particular
χ(α) ≡ ϕ(α) − ϕ also does .
Equations (9.5) have solutions of the form χ(x, t) = hk(x, t) = h(k0t− k ·
x), with h an arbitrary C2 function and k = (k0,k) a light-like four vector,
but they are not in H1(IRs) for s ≥ 2. One can argue more generally that
the above equations do not have solutions h ∈ H1(IRs) for s ≥ 2. In
fact, the wave equation requires that the support of the s+1–dimensional
Fourier transform ĥ(k), k ∈ IRs+1 is contained in {k2 = 0}, and the
second equation becomes

k2
∫

ds+1q ĥ(q − k) ĥ(q) = 0,

since kq − q2 = k2 − (k − q)2, (k − q)2ĥ(k − q) = 0. Thus,

H(k) ≡
∫

ds+1q ĥ(q − k) ĥ(q)

must have support in k2 = 0. Now, the sum of two light-like four vectors
k − q, q may be a light-like vector k only if k and q are parallel or an-
tiparallel, corresponding to sign k0q0 = +1 or = −1, respectively, i.e. only
if q = λ k, λ ∈ R . Hence, if k ∈ supp H and q and q − k belong to the
support of ĥ, q must lie in the intersection of the light cone q2 = 0 and
the hyperplane kq = 0; thus, writing

ĥ(q) = δ(q2)hr(q), H(k) = δ(k2)Hr(k),

where δ denotes the Dirac delta function, one has

Hr(k) = µ(Ik)
∫
dλhr(k(1 − λ))hr(λk),

43 H. Pecher. Math. Zeit. 185, 261 (1984); 198, 277 (1988).
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where µ is the Lebesgue measure and

Ik ≡ {q;q ∈ supphr ∩ {kq = 0, k2 = 0, q2 = 0}}

For s ≥ 2 this appears to exclude that h ∈ H1(IRs).
The above argument indicates that the solutions with the properties of
ii) can be constructed, e.g. as

ϕαG(x, t) = ehk(x,t) fR+2T (x)Tα

ϕ,

with fR(x) = 1 for |x| ≤ R and = 0 for |x| ≥ R(1 + ε).
The above discussion also shows that in one space dimension s = 1 one
may find solutions of (9.5) belonging to H1 and therefore one proves the
existence of genuine Goldstone modes all over the space. In fact, any
function h(x− t) or h(x+ t), h ∈ H1(IR), is a solution of (9.5).



10 Appendix

A Properties of the Free Wave Propagator

a) W (t) maps S × S into S × S
If u ∈ S(IRs) × S(IRs) (S(IRs) is the Schwartz space of C∞ test functions
decreasing at infinity faster than any inverse polynomial), then the solution
of the free wave equation is easily obtained by Fourier transform and one has

W (t)
(
ϕ0(k)
ψ0(k)

)
=
(

cos |k|t (sin |k|t)/|k|
−|k| sin |k|t cos |k|t

)(
ϕ0(k)
ψ0(k)

)
. (A.1)

cos |k|t, (sin |k|t)/|k| etc. are multipliers of S continuous in t and

d

dt
W (t)

∣∣
t=0 =

(
0 1

|k|2 0

)
= K. (A.2)

The group property is easily checked.

b) Hyperbolic character of W (t). Huygens’ principle.
Let ΩR−t be concentric spheres in IRs of radius R− t, 0 ≤ t ≤ R− δ, δ > 0,
for simplicity centered at the origin, then

‖W (t) u0‖ΩR−t
≤ e|t|/2 ‖u0‖ΩR

. (A.3)

This is a mathematical formulation of Huygens’ principle: the norm of u(t) in
ΩR−t depends only on the norm of u(0) in ΩR (influence domain). We start
by proving (A.3) for u ∈ S × S. The free wave implies

1
2

d

dt
[(∇ϕ)2 + ψ2] − ∇ · (ψ∇ϕ) = 0 (A.4)

(energy-momentum conservation) and, since ϕψ = d( 1
2ϕ

2)/dt, one has

1
2

d

dt
[(∇ϕ)2 + ϕ2 + ψ2] − ∇(ψ∇ϕ) = ϕψ. (A.5)

Now, we integrate the above equation over the cut cone with lower base
ΩR and upper baseΩR−t, and we use Gauss’ theorem to transform the volume

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 51–60
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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integral into a surface integral. We get

‖u(t)‖2
ΩR−t

− ‖u(0)‖2
ΩR

+
∫
S

dS { 1
2 [(∇ϕ)2 + ϕ2 + ψ2]n0 − n · (ψ∇ϕ)}

=
∫ t

0
dτ

∫
ΩR−τ

ϕ(x, τ)ψ(x, τ) dsx, (A.6)

where S is the three-dimensional surface defined by |x| = R − τ, 0 ≤ τ ≤ t
and n = (n, n0) is its outer normal. Since n0 > 0 and |n| = n0 we have that
the function in curly brackets in the left hand side of (A.6) is greater than

n0 1
2 [(∇ϕ)2 + ϕ2 + ψ2 − 2|ψ| |∇ϕ|] ≥ 0.

Furthermore, by the inequality a2 + b2 ≥ 2ab the integral over ΩR−τ on the
r.h.s. of (A. 6), is majorized by ‖u(τ)‖2

ΩR−τ
. Hence we get

‖u(t)‖2
ΩR−t

≤ ‖u(0)‖2
ΩR

+
∫ t

0
dτ ‖u(τ)‖2

ΩR−τ
. (A.7)

Now, by Gronwall’s lemma44 if a non-negative continuous function F (t)
satisfies

F (t) ≤ A(t) +
∫ t

0
dτB(τ)F (τ), (A.8)

with A(t), B(t) both continuous and non-negative and A(t) non-decreasing,
then

F (t) ≤ A(t) exp(
∫ t

0
B(τ)dτ). (A.9)

By applying Gronwall’s lemma to (A.7) one obtains (A.3) and the hyperbolic
character of W (t) on S × S.

Equation (A.3) also implies that W (t) is a continuous operator with re-
spect to theXloc topology and then it can be extended from the dense domain
S × S to whole Xloc preserving (A.3) and the group law.

c) W (t) is a strongly continuous group
Thanks to the group law, it is enough to show the strong continuity at t = 0,
namely that, for any bounded region V in IRS ,

lim
t→0

‖(W (t) − 1)u ‖V = 0, ∀u ∈ Xloc. (A.10)

Equation (A.10) is obvious for u ∈ S × S (see (A.1)) and it can be ex-
tended to the whole Xloc by using (A.3). In fact if uj ∈ S × S and uj → u

44 See e.g. G. Sansone and R. Conti, Non-linear Differential Equations, Pergamon
Press 1964, p.11.
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in Xloc, one has

‖(W (t) − 1)u‖V ≤ ‖(W (t) − 1)uj‖V + ‖(W (t) − 1)(uj − u)‖V
By (A.3), the latter term is majorized by (e

1
2 + 1)‖uj − u‖ΩR

, where ΩR is
a sphere such that ΩR−1 ⊃ V , and therefore can be made arbitrarily small.

One can show that the domain of the generatorK isH2
loc(IR

S)⊕H1
loc(IR

S);
in fact, ∀u ∈ Xloc ⊂ S ′ × S ′, in the distributional sense from (A.2) one has

K

(
ϕ
ψ

)
=
(
ψ
∆ϕ

)
.

The condition that the r.h.s. belongs to Xloc, gives ψ ∈ H1
loc(IR

S) and ∆ϕ ∈
L2
loc(IR

S), which is equivalent to ϕ ∈ H2
loc(IR

S).

B The Cauchy Problem for Small Times

Theorem B.1. If f(u) satisfies a local Lipschitz condition then properties
1), 2), 3), 4), listed in Chap. 4, hold

Proof.45

1) One has to check that W (t − s)f(u(s)) is an integrable function; it is
enough to show that it is a continuous function in the Xloc topology. To this
purpose, we consider the inequality (fs ≡ f(u(s)))

‖W (t− s)fs −W (t− s′)fs′‖ΩR−t
≤ (B.1)

≤ ‖(W (t− s) −W (t− s′))fs ‖ΩR−t
+ ‖W (t− s′)(fs − fs′)‖ΩR−t

The first term on the right hand side goes to zero as s′ → s as a consequence
of the strong continuity of W (t) on Xloc (see Appendix A, c)). The second
term can be estimated by using the hyperbolic character of W (t)

‖W (t)u0 ‖ΩR−t
≤ e|t|/2 ‖u0‖ΩR

( see Appendix A, b)) and the local Lipschitz property of f

‖W (t− s′)(fs′ − fs)‖ΩR−t
≤ Ae|t−s′|/2‖fs′ − fs‖ΩR

≤
≤ Ae|t−s′|/2 ‖u(s′) − u(s)‖ΩR

The r.h.s. goes to zero as s′ → s if u(t) is continuous in time.

2), 3) For any two solutions u1(t), u2(t), continuous in time, by the hyper-
bolicity of the free wave equation and the local Lipschitz property one has
45 We essentially follow Ref. I. quoted in footnote 4, to which we refer for a more

detailed and general discussion.
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‖u1(t) − u2(t)‖ΩR−t
≤ et/2{‖u10 − u20‖ΩR

+

+
∫ t

0
e−s/2 ‖f(u1(s)) − f(u2(s))‖ΩR−s

ds}

≤ et/2{‖u10 − u20‖ΩR
+ C̄(ΩR, ρ)

∫ t

0
e−s/2‖u1(s) − u2(s)‖ΩR−s

ds},

where 0 ≤ t < R/2 and

ρ = sup
0≤t<R/2

‖ui(t)‖ΩR−t
, (i = 1, 2).

Then, by Gronwall’s lemma (see Appendix A, (A.9))

‖u1(t) − u2(t)‖ΩR−t
≤ exp

[(
1
2 + C̄(ΩR, ρ)

)
t
] ‖u10 − u20‖ΩR

, (B.2)

which implies uniqueness and, for u2 = 0, it yields the hyperbolic character.

4) We briefly sketch the idea of the proof. We first consider the case in which
u0 has compact support ⊂ ΩR, in which case the proof essentially reduces to
a fixed point argument. Given ρ > 0, and a fixed u0 with ‖u0‖ΩR

< ρ/2, we
consider the operator S

(Su)(t) ≡ W (t)u0 +
∫ t

0
W (t− s)f(u(s))ds (B.3)

which maps C0(Xloc, IR) into itself (see 1) above). For T small enough, (de-
pending on ρ), S is a contraction on the space

E(T, ρ) = {u ∈ C0([0, T ], Xloc); suppu(t) ⊂ ΩR+t; sup
0<t≤T

‖u(t)‖ΩR+t
≤ ρ},

which is complete with respect to the metric

d(u, v) = sup
0≤t≤T

‖u(t) − v(t)‖ΩR+t+1
.

In fact, by using (B.3), (u0 fixed), the hyperbolic character of W (t) and the
local Lipschitz property of f(u), one has, for 0 ≤ t < T, T small enough,

‖(Su)(t) − (Sv)(t)‖ΩR+T+1 ≤

≤ et/2
∫ t

0
dses/2 C̄(ΩR+T+1, ρ) ‖u(s) − v(s)‖ΩR+T+1

≤

≤ et/2 t C̄(ΩR+T+1, ρ) d(u, v)
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and S maps E(T, ρ) into itself since

‖(S u)(t)‖ΩR+T+1
≤ et/2 { 1

2ρ+ t C̄(ΩR+T+1, ρ) ρ} ≤ ρ.

By Banach theorem on contractions, S has a fixed point which is the required
solution in the interval [0, T ).

In the case in which u0 does not have a compact support, we introduce a
space cutoff putting

u0n ≡
(
χnϕ0
χnψ0

)
, χn(x) ∈ C∞

0 (IRs),

χn(x) = 1, if |x| ≤ n, χn(x) = 0 if |x| ≥ 2n. Then, by the previous argu-
ment, (4.6) has a solution un(t) .
Now, for any sphere ΩR−t, by using the local Lipschitz condition and Gron-
wall’s lemma, as in the derivation of (B.2), we get

‖un(t) − um(t)‖ΩR−t
≤ exp[( 1

2 + C̄(ΩR, ρ) t ]‖u0n − u0m‖ΩR

and since u0n converges in Xloc to u0 as n → ∞, also un converges in Xloc

and it converges to the solution of (4.6), with initial data u0.

C The Global Cauchy Problem

To prove Theorem 4.1 we start by establishing the following a priori estimate.

Lemma C.1. If the potential U is such that the local Lipschitz condition and
the lower bound condition are satisfied, then any solution u ∈ C0([0, T ], Xloc)
of (4.6) with supp0≤t<T u(t) ⊂ ΩR satisfies

sup
0≤t<T

‖u(t)‖ΩR+1
≡ L < ∞. (C.1)

Proof. The proof exploits the energy conservation

d

dt
{ 1

2

∫
ΩR+1

[(∇ϕ(t))2 + (ψ(t))2]dsx+
∫
ΩR+1

U(ϕ(t))dsx} = 0. (C.2)

(The above equation follows from the continuity equation for the energy
momentum densities and the fact that there is no momentum flux through
the boundary of ΩR+1, since supp u(t) ⊂ ΩR. ) In fact, putting

K(t) ≡ 1
2

∫
ΩR+1

[(∇ϕ(t))2 + (ϕ(t))2 + (ψ(t))2] dsx,

one gets from (C.2)

K(t) = K(0) +
∫
ΩR+1

dsx [U(ϕ(0)) − U(ϕ(t))] +
∫ t

0
dt′
∫
ΩR+1

ϕ(t′)ψ(t′) dsx.
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Now, by using the lower bound condition (−U(ϕ(t)) ≤ α + βϕ(t)2) and the
inequality ϕψ ≤ 1

2 (ϕ2 + ψ2) ≤ (ϕ2 + ψ2 + (∇ϕ)2), we have

K(t) ≤ (K(0) + const) + (2γ + 1)
∫ t

0
dt′K(t′).

Then, by Gronwall’s lemma one has

K(t) ≤ (K(0) + const)e(2γ+1)|t|

which implies (C.1).
Now, we can sketch the proof of Theorem 4.1. Any u(t̄), 0 ≤ t̄ < T ,

defined by the solution for small times, for initial data of compact support,
can be chosen as initial data for the equation

u(t) = W (t− t̄) u(t̄) +
∫ t

t̄

W (t− s)f(u(s)) ds

equivalently for the equation

v(τ) = W (τ) v0 +
∫ τ

0
W (τ − s) f(v(s)) ds, (C.3)

where v0 ≡ u(t̄), v(τ) ≡ u(τ + t̄), and by Lemma C.1 ‖v0‖ΩR+1
< ρ, ρ > 2L.

Hence, the argument given in Appendix B can be applied and existence of
solutions for (C.3) can be proved for 0 ≤ τ < T1, with T1 depending only on
ρ. Since t̄ can be chosen as close as we like to T this provides a continuation
beyond T .

The existence of solutions for initial data with non-compact support is
proved by the same argument as at the end of Appendix B.

D The Non-linear Wave Equation with Driving Term

Theorem D.1. The equation

δ(t) = W (t)δ0 + L(t) +
∫ t

0
W (t− s) g(δ(s)) ds, (D.1)

with L(t), g, δ defined in Theorem 5.1, L(0) = 0, has a unique solution δ(t) ∈
C0(X, IR), X ≡ H1(IRs) ⊕ L2(IRs).

Proof. Uniqueness follows from global Lipschitz continuity by the same ar-
gument of Appendix B, (B.2), since the driving term L(t) cancels. As in
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Appendix B, existence of solutions for small times follows by a fixed point
argument applied to the space

E(T, ρ) = {δ ∈ C0([0, T ], X), sup
0≤t≤T

‖δ(t)‖X < ρ},

since

(Sδ)(t) ≡ W (t) δ0 + L(t) +
∫ t

0
W (t− s) g(δ(s)) ds

is a contraction on E(T, ρ) for T small enough, ‖δ0‖X < ρ/2. Finally, the
continuation beyond T is obtained as in Appendix C, by exploiting the a
priori estimate

sup
0≤t<T

‖δ(t)‖X ≡ L < ∞,

which follows from energy conservation dE(t)/dt = 0

E(t) = 1
2

∫
dsx[(∇χ(t))2 + (ζ(t) + ψ0)2] −

∫
χ(t)h dsx+

∫
G(χ(s)) dsx

(χ, ζ, h,G defined in Theorem 5.1). In fact, putting

H(t) ≡ E(t) + (γ + 1
2 ) < χ(t), χ(t) > + 1

2 < ψ0, ψ0 > + <ω−1h, ω−1h>
(D.2)

where < ., . > denotes the scalar product in L2, ω = (−∆)
1
2 and γ is the

constant occurring in (5.11), one has

H(t) = 1
4 < ωχ, ωχ > + 1

4 < ζ, ζ > + 1
2 < χ,χ > + < ψ0 + 1

2ζ, ψ0 + 1
2ζ > +

+ < ω−1h− 1
2ωχ, ω

−1h− 1
2ωχ > +

∫
[G(χ(s)) + γ|χ|2] dsx ≥ 1

4‖δ‖X
(D.3)

and

< ζ + ψ0, ζ + ψ0 >≤ 2{< ψ0 + 1
2ζ, ψ0 + 1

2ζ > + 1
4 < ζ, ζ >} ≤ 2H (D.4)

Hence,

H(t) = H(0) + 2(γ + 1
2 )
∫ t

0
dτ < χ(τ), ζ(τ) + ψ0 >≤

≤ H(0) + 2(γ + 1
2 )2
∫ t

0
dτH(τ),

so that, by (D.3) and by Gronwall’s lemma,

1
4

‖δ(t)‖X ≤ H(t) ≤ H(0) exp[4(γ +
1
2
)t].
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E Time Independent Solutions
Defining Physical Sectors

We briefly discuss the non-linear elliptic problem associated with the in-
vestigation of time independent solutions which define physical sectors (see
reference in footnote 23). For simplicity, we discuss the case s ≥ 3. By the
discussion of Chap. 6, we have to impose the condition ∇ϕ ∈ L2(IRs).

Proposition E.1. Let us consider the non-linear elliptic problem (U ∈ C2)

∆ϕ− U ′(ϕ) = 0, ϕ ∈ H1
loc(IR

s), ∇ϕ ∈ L2(IRs), s ≥ 3; (E.1)

then,

i) the function ϕ̃(r, ω) ≡ ϕ(x), x = rω, r > 0, ω ∈ Ss−1 (the unit
sphere of IRs), is continuous in r and it has a finite limit ϕ̃(∞, ω) as
r → ∞, for almost all ω ∈ Ss−1, and the limit is independent of ω,
briefly

lim
|x|→∞

ϕ(x) = ϕ∞, (E.2)

ii) (E.1), with boundary condition (E.2), does not have solutions unless ϕ∞
is a stationary point of the potential

U ′(ϕ∞) = 0, (E.3)

iii) if ϕ∞ is an absolute minimum of U , then ϕ is the unique solution of
(E.1) with ϕ∞ as boundary value at infinity and ϕ = ϕ∞.

Proof.
i) By using a mollifier technique, one reduces the proof of the existence of
the limit ϕ̃(∞, ω), for almost all ω ∈ Ss−1, to the estimate

|ϕ̃(r, ω) − ϕ̃(r0, ω)| ≤
∫ r

r0

∣∣∣∣ ddr′ ϕ̃(r′, ω)
∣∣∣∣ dr′ ≤

≤
(∫ r

r0

∣∣∣∣ dϕdr′

∣∣∣∣
2

(r′)s−1dr′
) 1

2 (∫ r

r0

(r′)s−1dr′
) 1

2

≤

≤ const
(∫ r

r0

∣∣∣∇ϕ
x

r′

∣∣∣2 (r′)s−1dr′
) 1

2

|r2−s − r2−s
0 | 1

2 .

(E.4)

The independence of ω, for almost all ω, follows from the following fact:
if ϕ is locally measurable and ∇ϕ ∈ Lp(IRs), 1 ≤ p ≤ s, then there exists
a constant A, depending on f , such that

ϕ−A ∈ Lq(IRs),
1
q

=
1
p

− 1
s
. (E.5)
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To see this we define

HL = {f ∈ S ′(IRs),∇f ∈ Lp(IRs)}
and associate to each element of HL the norm

‖f‖HL = ‖∇f‖Lp .

The so obtained normed space is complete, i.e. if fj ∈ HL is a Cauchy se-
quence, then ∇kFj converges to an F (k) ∈ Lp and since ∇kF

j − ∇jF
(k) = 0

in the sense of distributions, there exists an f such that F (k) = ∇kf .
It is convenient to consider the quotient space H = HL / H0, where
H0 = {f ∈ S ′(IRs),∇f = 0}. C∞

0 (IRs) is weakly dense in H, i.e. if h ∈ (H)∗,
the dual space of H, then h(g) = 0, ∀g ∈ C∞

0 (IRs), implies h = 0; in fact if
h is a continuous linear functional on H

|h(g)| ≤ const‖∇g‖Lp

and by the Riesz representation theorem this implies that there exists a h ∈
Lq such that

h(g) =
∫
h∇gdsx.

Hence, h(g) = 0, ∀g ∈ C∞
0 (IR) implies 0 =

∫
h∇gdsx = − ∫ ∇hgdsx, i.e.

∇h = 0, i.e. h = const, i.e. h = 0 as a functional on H.
Finally, if f ∈ H, there exists a sequence {fj ∈ C∞

0 (IRs)} with fj → f in
H; this implies that ∇fj converges in Lp(IRs) and, by Sobolev’s inequality

‖fj‖Lq ≤ const‖∇fj‖Lp ,

fj → f̃ in Lq and f̃ belongs to the same equivalence class of f , i.e. f =
f̃ + const.

ii) Since ϕ̃(r, ω) is continuous in r and U ∈ C2

lim
r→∞U ′(ϕ̃(r, ω)) = U ′(ϕ̃(∞, ω)) = U ′(ϕ∞).

Equation (E.1) implies that also limr→∞∆ϕ̃(r, ω) exists and it is independent
of ω. Furthermore, ∀f(r) ∈ D(IR+), with

∫∞
0 f(r)dr = 1

U ′(ϕ∞) = lim
r→∞∆ϕ̃(r, ω) = lim

a→∞(∆ϕ̃)(r + a, ω) =

= lim
a→∞

∫ ∞

0
drf(r)(∆ϕ̃)(r + a, ω) =

= lim
a→∞

∫ ∞

0
dr(∆f(r))ϕ̃(r + a, ω) =

= ϕ(∞)
∫ ∞

0
dr∆f(r) = 0.
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iii) If ϕ∞ is an absolute minimum

Ũ(ϕ) ≡ U(ϕ) − U(ϕ∞) ≥ 0

and the solutions of (E.1) are stationary points of the functional

H(ϕ) =
∫

[|∇ϕ|2 + Ũ(ϕ)]dsx.

Now, by putting ϕλ(x) ≡ ϕ(λx), λ ≥ 0, we get

Hλ =
∫

[|∇ϕλ|2 + Ũ(ϕλ)]dsx =
∫

[λ−1|∇ϕ|2 + λ−3Ũ(ϕ)]dsx

and
δ(λ)H = δλ

∂Hλ

∂λ
= −(δλ)λ−2

∫
[|∇ϕ|2 + 3λ−2Ũ(ϕ)]dsx.

Hence, the condition of stationarity and the positivity of Ũ yield
∫

|∇ϕ|2dsx = 0, i.e. ∇ϕ = 0, i.e. ϕ = ϕ∞,

and Ũ(ϕ∞) = 0.



Introduction to Part II

These notes arose from courses given at the International School for Advanced
Studies (Trieste) and at the Scuola Normale Superiore (Pisa) in various years,
with the purpose of discussing the structural features and collective effects
which distinguish the quantum mechanics of systems with infinite degrees of
freedom from ordinary quantum mechanics.

The motivations for considering systems with infinite degrees of freedom
are many. Historically, the first and one of the most important ones came
from the problem of describing particle interactions consistently with the
principles of special relativity. As it is well known, the concept of force as
“action at a distance” between particles involves the concept of simultaneity
and it does not fit into the framework of relativity, unless one is ready to
accept highly non-local actions. This is the reason why so far special relativity
has provided a beautiful kinematics but no relativistically invariant theory
of (classical) particle (action at a distance) interactions. The transmission of
energy and momentum by local (or contact) actions leads to the concept of
“medium” or field as the carrier of the transmitted energy and momentum
and therefore to a system with infinite degrees of freedom.

Another important class of physical phenomena, whose description in-
volves infinite degrees of freedom, are those related to the bulk properties
of matter. In fact, the intensive properties of systems consisting of a large
number N ∼ 1027 of constituents, are largely independent of N and of the
occupied volume V , for given fixed density n = N/V ; therefore, their de-
scription greatly simplifies by taking the so-called thermodynamical limit
N → ∞, V → ∞ with n fixed. In this way one passes to the limit of infinite
degrees of freedom. Collective phenomena, phase transitions, thermodynami-
cal properties etc. could hardly have a simple treatment without such a limit.

The quantization of systems with infinite degrees of freedom started being
investigated soon after the birth of quantum mechanics and it was soon re-
alized that new theoretical structures were involved. In particular, the states
of an infinite system cannot be described by a single wave function (of an
infinite number of variables) as in ordinary quantum mechanics, i.e. the stan-
dard Schroedinger representation is not possible. The changes involved were
regarded so substantial to deserve the name of second quantization. As em-
phasized by Segal, Haag, Kastler and others, it is more convenient, logically
more economical and actually more general to formulate the principles of



64 Part II: Symmetry Breaking in Quantum Systems

quantum mechanics in terms of (the algebra of) observables and states as
positive linear functionals or expectations on the observables. This covers
both the case of finite degrees of freedom, where the Von Neumann theorem
selects the Schroedinger representation in an essentially unique way, and the
case of infinite degrees of freedom, for which even the Fock representation is
generically forbidden (apart from the free case).

These notes focus the attention on the mechanism of spontaneous sym-
metry breaking (SSB). It seems fair to say that the realization of such a
possibility represented a real breakthrough in the development of theoretical
physics. In fact it is at the basis of most of the recent achievements in Many
Body Theory and in Elementary Particle Theory.

In spite of the cheap explanations, the phenomenon of SSB is deep and
subtle and crucially involves the occurrence of infinite degrees of freedom.
From elementary quantum mechanics, one learns that the symmetries of the
Hamiltonian are symmetries of the physical description of the system, which
does not mean that the ground state is symmetric, but rather that the symme-
try transformations commute with the time evolution. Thus, whenever the
symmetry can be implemented by a (physically realizable) correspondence
between the states of the systems, no symmetry breaking can be observed.

The way out of this obstruction is the realization that for infinitely ex-
tended systems, the algebra of observables, which define a given system, and
its time evolution do not select a unique realization of the system, but rather
one has more than one “physical world” or (infinite volume thermodynamical)
“phase”, which are physically disjoints in the sense that no physically realiz-
able operation can lead from one to the other. Technically this corresponds
to the existence of inequivalent representations of the algebra of observables.
The occurrence of spontaneous symmetry breaking in a given world is then
related to its instability with respect to the symmetry transformations. Thus,
the lack of symmetry is due to the impossibility of comparing the properties
of a state with those of its transformed one, since the latter belongs to a
physically disjoint world. The necessary localization in space (and time) of
any physically realizable operation and the infinite extension of the system
are crucial ingredients for such a phenomenon.

The occurrence of inequivalent representations of the algebra of canonical
variables or more generally of observables, for systems with infinite degrees
of freedom (briefly infinite systems), is briefly reviewed in Chaps. 1–3.

A general formulation of quantum mechanics of infinitely extended sys-
tems is made possible by exploiting the localization properties of the algebra
of canonical variables or of observables. As emphasized by Haag, the lo-
cal structure is the key property and together with the related asymptotic
abelianess and cluster property plays a crucial role for the identification of
the physically relevant representations and of the “pure” phases. A clear dis-
cussion of spontaneous symmetry breaking could not be done without the
realization of these points (Chaps. 4–7).
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General criteria and non-perturbative constructive approaches to sponta-
neous symmetry breaking are briefly discussed in Chaps. 8–10 and applied
to simple examples in Chaps. 11 and 13. In particular the Ising model dis-
plays the discrepancy between the non-perturbative (Ruelle and Bogoliubov)
approaches and the perturbative (Goldstone) criterium.

The modification of the general structure for systems at non-zero temper-
ature and the basic role of the KMS condition is reviewed in Chap. 12 and
applied to simple examples of many body systems and of quantum fields.

The spontaneous breaking of continuous symmetries and the implication
on the energy spectrum are discussed in detail in Chap. 15. The Goldstone
theorem is carefully discussed with a critical analysis of its hypotheses. In
particular, the integrability of the charge density commutators and the lo-
calization properties of the dynamics are argued to be the relevant ingre-
dients for a clear and mathematical control of the Goldstone theorem for
non-relativistic systems. The relation between the range of the potential and
the critical delocalization of the dynamics leading to an evasion of the Gold-
stone theorem is worked out in detail beyond the Swieca conjecture. By using
a perturbative expansion in time, the critical decay of the potential for an
evasion of the Goldstone bosons and the occurrence of an energy gap turns
out to be that of the Coulomb potential rather than the one power faster de-
cay predicted by Swieca condition. Such an analysis clarifies the link between
spontaneous symmetry breaking in non-relativistic Coulomb systems and in
(positive) gauge theories; in particular it explains the occurrence of “mas-
sive” Goldstone bosons associated to symmetry breaking as a consequence of
a Coulomb-like delocalization induced by the dynamics in both cases.

The non-zero temperature version of the Goldstone theorem is discussed
in Chap. 16, with a careful handling of the distributional problems of the zero
momentum limit, which actually gives rise to derivatives of the Dirac delta
function. The extension of the Goldstone theorem to the more general case in
which the Hamiltonian and the generators of the symmetry group generate a
Lie algebra (non-symmetric Hamiltonians), provides non-perturbative infor-
mation on the energy gap of the modified Goldstone spectrum (Chap. 18).

A version of the Goldstone theorem for gauge symmetries in local gauge
theories, which accounts for the absence of physical Goldstone bosons (Higgs
mechanism) is presented in Chap. 19, by exploiting Gauss’ law and an exten-
sion of the Goldstone theorem for relativistic local fields which does not use
positivity.

In conclusion the aim of these lectures is to provide an introduction to
the quantum mechanics of infinitely extended systems and to the fascinat-
ing and important subject of spontaneous symmetry breaking. No pretension
of completeness is made about the subject, which has a vast physical and
mathematical literature. Notwithstanding, the basic mechanism of sponta-
neous symmetry breaking, apart from the popular accounts which do not
convey the relevant mathematical structures, does not seem to be part of the
common education of theoretical physics students.
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The background knowledge required is reduced to the basic elements of the
theory of Hilbert space operators and to the foundations of ordinary quantum
mechanics. The presentation does not indulge in the mathematical details,
while respecting the mathematical correctness of the arguments, hoping to
keep the message clear and direct for a wide audience possibly including
mathematical students. The basic ideas and structures are discussed in a
way which should be easily implementable with full rigor according to the
taste of the reader.

The chapters marked with a * can be skipped in a first reading.
The material presented in these lectures is largely based on collaborations

and illuminating discussions with Gianni Morchio, to whom I am greatly
indebted.



1 Quantum Mechanics.
Algebraic Structure and States

We briefly review the basic structure of Quantum Mechanics (QM) with the
aim of covering both the case of systems with a finite number of degrees of
freedom (ordinary QM) as well as the case of systems with an infinite number
of degrees of freedom (briefly infinite systems).46

For this purpose, it is useful to recall that in the original formulation
of QM the emphasis has been on the canonical structure, in terms of the
canonical variables q, p, in analogy with the classical case. The quantization
conditions, which mark the basic difference between classical and quantum
mechanics, amounts to replace the Poisson brackets structure , for N degrees
of freedom, with the canonical commutation relations (CCR)

[ qi, pj ] = i δij , [ qi, qj ] = 0 = [ pi, pj ], i, j = 1, 2, ...N, (1.1)

where δij denotes the Kronecker symbol and for simplicity units have been
chosen such that � = 1. In this way, the abelian algebra of the classical
canonical variables is turned into the non-abelian Heisenberg algebra AH .47

The CCR imply that the canonical variables q, p cannot both be rep-
resented by selfadjoint bounded operators in a Hilbert space.48 This is the
source of technical mathematical problems (domain questions etc.), so that
it is more convenient to use as basic variables the so-called Weyl operators

U(α) ≡ eiαq, V (β) ≡ eiβp, αq ≡
∑
i

αi qi, β p ≡
∑
i

βi pi, αi, βi ∈ R

and the algebra AW generated by them, briefly called the Weyl algebra,
instead of the Heisenberg algebra.
46 For an elementary introduction to the quantum mechanics of infinite systems

see e.g. F. Strocchi, Elements of Quantum Mechanics of Infinite Systems, World
Scientific 1985, hereafter referred to as [S 85].

47 W. Heisenberg, The Physical Principles of the Quantum Theory, Dover 1930;
P.A.M. Dirac, The Principles of Quantum Mechanics, Oxford University Press
1986.

48 In fact, the CCR imply i n qn−1 = qnp − p qn and by taking the norms one has
n||qn−1|| ≤ 2||qn−1|| ||q|| ||p||, i.e. ||q|| ||p|| ≥ n/2.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 67–71
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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The Heisenberg algebra can in any case be recovered under the general
regularity condition of strong continuity of U(α), V (β), thanks to Stone’s
theorem.49

In terms of the Weyl operators, the Heisenberg commutation relations
read

U(α)U(α′) = U(α+ α′), V (β)V (β′) = V (β + β′),

U(α)V (β) = e−iαβ V (β)U(α). (1.2)

The self-adjointness condition on the q, p naturally defines an antilinear *
operation in AW

U(α)∗ ≡ U(−α), V (β)∗ ≡ V (−β), (1.3)

which turns AW into a *-algebra.
Furthermore, in order to construct more general functions of the canonical

variables (than the Weyl exponentials) a criterium of convergence or a topol-
ogy is needed; for general mathematical and technical reasons it is convenient
to assign a norm || || to the elements of AW , with the property

||A∗A|| = ||A||2, ∀A ∈ AW , (1.4)

and to consider the norm closure of AW , still denoted by the same symbol.
It is a general mathematical result that for the Weyl algebra this can be

done in one and only one way.50 A norm with the above property is called
a C∗-norm and in this way the Weyl algebra becomes a C∗-algebra. From a
physical point of view the intrinsic meaning of the norm of an element A is
that of the maximum absolute value which can be taken by the expectations
of A on any state. The topology induced by the norm is usually called the
uniform (or norm) topology; it is the strongest one and also the one with an
intrinsic algebraic meaning.

The above discussion emphasizes the algebraic structure at the basis of
quantum mechanics, with the algebra AW of canonical variables playing the
same kinematical role as the (algebra of the) classical canonical variables. The
identification of such an algebra is a preliminary step for the description of a
given system and actually can be taken as the basic point for the definition
of the system.

More generally, for systems with infinite degrees of freedom and especially
for relativistic quantum systems (where the canonical formalism is problem-
atic, see e.g. [S 85]), it is more convenient to identify the algebraic structure,
which underlies the definition of the system, with the algebra (with identity)
generated by the physical quantities, briefly called observables, which can be
49 See e.g. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol.

I, Academic Press 1972, Sect. VIII.4.
50 J. Slawny, Comm. Math. Phys. 24, 151 (1972); J. Manuceau, M. Sirugue, D.

Testard and A. Verbeure, Comm. Math. Phys. 32, 231 (1973).
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measured on the given system.51 From an operational point of view, a system
is actually defined by its algebra of observables A and, by appealing to the
operational properties of measurements, one can argue that A has an iden-
tity and can be given the structure of C∗-algebra.52 In the sequel, we shall
take the point of view that a quantum system is defined by its algebra of
observables A, with the understanding that in many concrete cases it can be
identified with the algebra of canonical variables.

The explicit link between the algebra A and the results of measurements
is provided by the concept of state. Just as in the classical case a state Ω
is characterized by the expectation values of the canonical variables or more
generally of the observables: < A >Ω≡ Ω(A); namely Ω is a functional
Ω : A → C with the property of being linear and positive

Ω(λA+ µB) = λΩ(A) + µΩ(B), Ω(A∗A) ≥ 0, ∀A ∈ A, (1.5)

and conventionally normalized to one Ω(1) = 1. It follows that Ω is a con-
tinuous functional53

|Ω(A)| ≤ ||A||, ∀A ∈ A. (1.6)

The above general characterization of states does not only cover the stan-
dard case of the so-called pure states Ω, represented by vectors Ψ of a Hilbert
space H, (the expectation on such states being given by the matrix elements
< A >Ω= (Ψ,AΨ), with ( , ) the scalar product in H), but also the states,
briefly called mixed states, whose expectation values are given by normalized
density matrices, namely are of the form

< A >Ω= Tr(ρΩ A), ρΩ =
∑
i

λΩi Pi, λ
Ω
i ≥ 0,

∑
i

λΩi = 1, (1.7)

with Pi one-dimensional projections.
Quite generally a pure state on a C∗-algebra is a state which cannot be

decomposed as a convex sum

Ω = λΩ1 + (1 − λ)Ω2, 0 < λ < 1, (1.8)

of two other states. Otherwise the state is called a mixed state.
The above definition of state is particularly useful for the description of

systems with infinite degrees of freedom, briefly infinite systems, for which
51 This philosophy has been pioneered by I. Segal, R. Haag, D. Kastler, H. Araki

etc., see R. Haag, Local Quantum Physics, Springer 1996.
52 For a simple discussion see F. Strocchi, An Introduction to the Mathematical

Structure of Quantum Mechanics, SNS 1996, hereafter referred to as [SNS 96].
53 For a handy presentation of the algebraic approach to quantum mechanics see

[SNS 96]. A general reference for the algebraic approach to QM is O. Bratteli
and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol.
1, 2, Springer 1987, 1996.
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the elementary concept of wave function is not available and even the stan-
dard Schroedinger representation of the algebra of canonical variables may
not be allowed (as we shall see below). Whereas in the case of a quantum
system with N degrees of freedom one may choose, e.g., the maximal abelian
algebra generated by the N coordinates q1, ...qN and describe the states of
the system by wave functions of such variables, for an infinite system one
should consider an infinite set of coordinates and it is problematic to define
the corresponding wave functions. Moreover, the Von Neumann uniqueness
theorem does not apply to infinite systems and there are in general physically
relevant representations of the algebra of canonical variables which are not
equivalent to the Schroedinger representations (the physical meaning of this
problem shall be discussed below). The virtue of the above definition of state
is that it applies in general, without involving the concept of wave function.

It is a deep result of Gelfand, Naimark and Segal,54 also called the GNS
construction, that the knowledge of a state Ω in the above sense, namely
in terms of its expectations on A, uniquely determine (up to isometries)
a representation55 πΩ of the canonical variables, or more generally of the
observables, as operators in a Hilbert space HΩ which contains a reference
vector ΨΩ , whose matrix elements reproduce the given expectations

(ΨΩ , πΩ(A)ΨΩ) = Ω(A), ∀A ∈ A. (1.9)

The idea of the proof is to associate to each element A ∈ A a vector
ΨA, which will have the meaning of a vector obtained by applying A to the
“reference” vector Ψ1 = ΨΩ . If such an association is done in a way which
preserves the linear structure of A, (i.e. ΨA +ΨB = ΨA+B), one gets a vector
space DA isomorphic to A, which is naturally equipped with a non-negative
inner product

(ΨA, ΨB) = Ω(A∗B).

The null elements are those corresponding to the set

J = {A ∈ A; Ω(B∗A) = 0, ∀B ∈ A}. (1.10)

J is a left ideal of A, i.e. a linear subspace such that A J ⊆ J and one
may consider the quotient A/J and correspondingly the equivalence classes
of vectors Ψ[A+J ] = Ψ[A] ∈ DA/DJ ≡ DΩ . In this way the inner product
becomes strictly positive on DΩ , which is therefore a pre-Hilbert space, and
by completion one gets a Hilbert space HΩ = DΩ .

54 M.A. Naimark, Normed Rings, Noordhoff 1964.
55 We recall that a representation π of a C∗-algebra in a Hilbert space H is *-

homomorphism π of A into the C∗-algebra of bounded (linear) operators in H,
i.e. a mapping which preserves all the algebraic operations, including the * .
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The representation is then defined by

πΩ(A)Ψ[B] ≡ Ψ[AB] (1.11)

(this equation is well defined since [B] = [C] implies [AB] = [AC]). By
construction, the vector ΨΩ ≡ Ψ[1] is cyclic with respect to πΩ(A), namely
πΩ(A)ΨΩ is dense in HΩ ; moreover ||πΩ(A)||HΩ

≤ ||A||, thanks to the con-
tinuity of Ω.

The so constructed representation is unique up to unitary equivalence. In
fact, if π′ is another representation in a Hilbert space H′ with a cyclic vector
Ψ ′ such that

(Ψ ′, π′(A)Ψ ′) = Ω(A),

then the mapping U : πΩ(A)ΨΩ → π′(A)Ψ ′ and its inverse U−1 are defined
on dense sets and preserve the scalar products, so that they are unitary and
π′(A) = Uπ(A)U−1.

The GNS representation πΩ defined by a state Ω is irreducible iff Ω is
pure.

As a relevant application of the above result, we consider a *-automor-
phism α of A, namely an invertible mapping of A into A, which preserves all
the algebraic operations including the * (also called algebraic symmetry). If
the state Ω is invariant in the sense that

Ω(α(A)) = Ω(A), ∀A ∈ A, (1.12)

then, in the GNS representation defined by Ω, such an automorphism is
implemented by a unitary operator Uα with

Uα ΨΩ = ΨΩ , UαπΩ(A)ΨΩ = πΩ(α(A))ΨΩ . (1.13)

Therefore, all the matrix elements are invariant under the operation which
implements α, and briefly one says that α gives rise to a symmetry of the
states of the Hilbert space HΩ . Thus, the invariance of Ω under α implies
that α is a symmetry of the physical world or phase defined by Ω through
the GNS construction.



2 Fock Representation

The general lesson from the GNS theorem is that a state Ω on the algebra of
observables, namely a set of expectations, defines a realization of the system
in terms of a Hilbert space HΩ of states with a reference vector ΨΩ which
represents Ω as a cyclic vector (so that all the other vectors of HΩ can be ob-
tained by applying the observables to ΨΩ). In this sense, a state identifies the
family of states related to it by observables, equivalently accessible from it
by means of physically realizable operations. Thus, one may say that HΩ de-
scribes a closed world, or phase, to which Ω belongs. An interesting physical
and mathematical question is how many closed worlds or phases are associ-
ated to a quantum system. In the mathematical language this amounts to
investigating how many inequivalent (physically acceptable) representations
of the observable algebra which defines the system exist.

For this purpose we remark that, given a pure state Ω, all the states
defined by vectors of the Hilbert space HΩ of the GNS construction define
(unitarily) equivalent representations; in fact, the corresponding GNS Hilbert
spaces can be identified, and any element A ∈ A is represented by the same
operator πΩ(A) in all cases. Also the mixed states defined by density matrices
in HΩ define essentially the same representation. In fact, the equation

Ωρ(A) ≡ Tr(ρ πΩ(A)) =
∑
i

λi (Ψi, πΩ(A)Ψi) =
∑
i

λiΩi(A), (2.1)

where Ψi ∈ HΩ , expresses Ωρ as a convex linear combination of states which
define representations equivalent to πΩ . Technically one says that πΩρ is
quasi equivalent to πΩ , meaning that it can be decomposed into a sum of
representations equivalent to πΩ .

The set of states of the form (2.1) is called the folium of the representation
πΩ and can be interpreted as the set of the states which are accessible from Ω
by observable “operations”, i.e. the closed world of states associated with Ω.

One may wonder whether the above notions are physically important
since they are not usually brought up in the standard presentations of quan-
tum mechanics. The reason is that, contrary to the infinite dimensional case,
for systems with a finite number of degrees of freedom, under very general
regularity conditions, there is only one irreducible representation of the Weyl
algebra, the so called Fock representation, all the others being unitarily equiv-
alent to it. According to the above discussion, one may then say that there

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 73–79
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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is only one folium, or only one closed world, available for the representations
of the Weyl algebra.

From a conceptual point of view, such result (Von Neumann theorem)
explains why, for systems with a finite number of degrees of freedom, the
distinction between the algebraic structure of the canonical variables and the
states is not so relevant, since there is only one Hilbert space of states for
a given quantum system. In the language of Statistical Mechanics one could
say that there is only one phase. On the other hand, for infinite systems
the occurrence of inequivalent representations, i.e. of different “phases” or
different disjoint worlds, is the generic situation.

In the following we shall discuss a simplified version of Von Neumann’s
theorem which characterizes the Fock representation in terms of the number
operator.56

We allow for infinite degrees of freedom and we consider regular repre-
sentations of the corresponding (infinite dimensional) Weyl algebra, namely
representations π such that π(U(α)), π(V (β)) with α, β any finite compo-
nent vectors, are strongly continuous in α, β. This is the standard regularity
assumption underlying the analysis of representations of Lie groups; it ap-
pears very general since, for separable spaces, it is equivalent to the condi-
tion that the matrix elements of π(U(α)), π(V (β)) are measurable functions.
Furthermore, by Stone’s theorem, such a regularity condition is equivalent
to the existence of the generators. Thus we have a representation of the (in-
finite dimensional) Heisenberg algebra AH and we may assume that there
is a common dense domain D for AH . The representation is said to be ir-
reducible if any (bounded) operator which commutes with π(AH) on D is a
multiple of the identity. In the following, the symbol A will be used to denote
both the abstract element of AH as well its representative in the concrete
representation we are considering.

For the following purposes, it is convenient to introduce the so-called
annihilation and creation operators

aj ≡ (qj + i pj)/
√

2, a∗
j = (qj − i pj)/

√
2, (2.2)

and the so-called number operator Nj ≡ a∗
j aj . The physical meaning of such

operators will be discussed below.
The Heisenberg commutation relations give

[ aj , a∗
k ] = δjk, [ aj , ak ] = 0 (2.3)

56 For a proof of Von Neumann theorem see e.g. [SNS 96]. For the characterization
of the Fock representation in terms of existence of the number operator see
G.F. Dell’Antonio, S. Doplicher, Jour. Math. Phys. 8, 663 (1967); J.M. Chaiken,
Comm. Math. Phys. 8, 164 (1967); Ann. Phys. 42 23 (1968) and references
therein.
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and
[Nj , ak ] = −δjk ak. (2.4)

Proposition 2.1. In an irreducible representation of the Heisenberg algebra
with domain D, the following properties are equivalent

1) the total number operator N =
∑
j Nj exists in the sense that ∀α ∈ R

strong − lim
K→∞

ei α
∑K

j a∗
j aj ≡ ei αN ≡ T (α), ∀α ∈ R (2.5)

exists on D and defines a one-parameter group of unitary operators T (α)
strongly continuous in α, leaving D stable, so that its generator N exists;

2) there exists a vector Ψ0, called the Fock (vacuum) vector, such that

aj Ψ0 = 0, ∀j. (2.6)

In this case the representation is called a Fock representation.

Proof. Property 1) and the commutation relations imply that

T (α) aj T (α)−1 = e−iα aj

and therefore [T (2π),AH ] = 0. By the irreducibility of AH it follows that
T (2π) = 1 exp i θ, so that T ′(α) ≡ T (α) exp (−i α θ/2π) satisfies T ′(2π) = 1.
By using this condition in the spectral representation of T ′(α)

T ′(α) =
∫
σ(N ′)

dE(λ) eiαλ, N ′ ≡ N − θ/2π,

where σ(N ′) denotes the spectrum of N ′, one concludes that the projection
valued spectral measure must be supported on a subset of Z, i.e. the spectrum
of N ′ and therefore of N is discrete. Now, if λ > 0 is a point of the spectrum
of N and Ψλ a corresponding eigenvector, then

0 < λ||Ψλ||2 = (Ψλ, N Ψλ) =
∑
j

||ajΨλ||2,

so that there must be at least one j such that ajΨλ �= 0 and one has

T (α) ajΨλ = ei(λ−1)α aj Ψλ.

Thus, also λ − 1 ∈ σ(N) and, since the spectrum of N is non-negative, in
order that this process of lowering the eigenvalues terminates, λ = 0 must be
a point of the spectrum of N and

aj Ψ0 = 0, ∀j. (2.7)

Conversely, if the Fock vacuum Ψ0 exists, then AH Ψ0 = P(a∗)Ψ0, where
P(a∗) denotes the polynomial algebra generated by the a∗’s and on such a
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domain, which is dense by the irreducibility of AH , N exists as a selfadjoint
operator and the exponential series converges strongly and defines a one-
parameter group of unitary operators, since the monomials of a∗ applied to
Ψ0 yield eigenstates of N and generate such a domain.

In the case of a finite number of degrees of freedom, the above argument
can be turned into an analog of Von Neumann’s theorem by proving that
∀j, Nj exists as a selfadjoint operator onD, as a consequence of the regularity
condition.57

As in the finite dimensional case, all irreducible Fock representations are
unitarily equivalent and one can actually speak of one (irreducible) Fock
representation. In fact, given any two of them, say π1, π2, with Fock vectors
Ψ01, Ψ02, respectively, the mapping U defined by

U Ψ01 = Ψ02, U π1(A)Ψ01 = π2(A)Ψ02, ∀A ∈ AH

and its inverse U−1 are defined on dense sets since, by irreducibility, Ψ01, Ψ02
are cyclic vectors. Furthermore, since the matrix elements

(πi(A)Ψ0i, πi(B)Ψ0i), i = 1, 2, ∀A,B ∈ AH

only involve the canonical commutation relations and the Fock condi-
tion, (2.6), they are equal, so that U is unitary.

It is worthwhile to remark that in an irreducible Fock representation the
zero eigenvalue of N has multiplicity one. In fact, if Ψ ′ is orthogonal to Ψ0
and satisfies NΨ ′ = 0, then aj Ψ

′ = 0, ∀j and for any polynomial P (a∗) of
the a∗ one has

(Ψ ′, P (a∗)Ψ0) = (P (a)Ψ ′, Ψ0) = 0.

This implies Ψ ′ = 0, by the cyclicity of Ψ0 with respect to the polynomial
algebra generated by the a∗.

It is clear from the above argument that the characteristic feature of a
Fock representation is that the states of its Hilbert space can be described in
terms of the eigenvalues of the Nj , all of which exist as self-adjoint operators
on D since they are dominated by N . For this reason the Fock representation
is also called the occupation number representation.

It should be stressed that only in the Fock representation the annihilation
and creation operators aj , a∗

j have a simple interpretation, namely that of
decreasing or increasing the eigenvalues of Nj (or of N). Even in this case,
however, their physical meaning may not be transparent, since Nj = (p2

j +
q2j − 1)/2 may not be related to a relevant observable (see e.g. the case of
the hydrogen atom or even of the free particle). A special case is that of a
system of free harmonic oscillators, where Nj is related to the Hamiltonian
for the j-th degree of freedom and aj , a

∗
j respectively annihilate and create

elementary excitations of the system. By the same reasons, in general the
57 See e.g. O. Bratteli and D.K. Robinson,Operator Algebras and Quantum Statis-

tical Mechanics, Vol.2, Springer 1996, Sect. 5.2.3; see also [SNS 96].
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Fock state is not related to the possible ground state nor does it in general
have a simple physical meaning.

The picture emerging from the case of a system of harmonic oscillators
however suggests that the occupation number representation may be useful
for describing systems whose states can be described in terms of number of
elementary excitations. In this case, the index j may be taken to label the
j-th excitation (j may denote the set of quantum numbers which identify such
excitation) and aj , a∗

j decrease and increase, respectively, the number of j-th
excitations. The states of the system are then analyzed in terms of products
of single excitation (or single particle) states. As a consequence, whereas the
Hilbert (sub)space HN corresponding to a fixed number N of particles or
elementary excitations may not have a ground state, the total Hilbert space
(the direct sum of the HN , N ∈ N) has the Fock state as ground state (since
each elementary excitation has positive energy).

The message from the above Proposition is that the Fock representation
is allowed if N is a good quantum number for the description of the rele-
vant states of the system. This is reasonable in the case of a finite number
of degrees of freedom and in the case of non-interacting infinite degrees of
freedom (with vanishing density). As we shall see below, however, in the case
of infinite degrees of freedom, the interaction has generically dramatic effects,
in the sense that it usually leads to a redefinition of the degrees of the free
theory, with the result that the eigenstates of the total Hamiltonian cannot
be described in terms of the eigenstates of the free Hamiltonian, so that N
is not a well defined quantum number.

In conclusion, the Fock representation for the algebra generated by the
aj , a

∗
j is convenient and physically motivated if such annihilation and cre-

ation operators are related to the elementary excitations (or normal modes)
which diagonalize the total Hamiltonian. In general, the elementary excita-
tions described by the aj , a∗

j are those which diagonalize the so-called free
(or bilinear) part of the Hamiltonian and therefore the interpretation of such
annihilation and creation operators is simple only if the states of the system
can be analyzed in terms of elementary excitations corresponding to the free
part of the Hamiltonian; as we shall discuss below, for interacting relativistic
fields or for many body systems with non-zero density, this is never the case
and the Fock representation is not allowed.

The relation between the Fock representation and the free Hamiltonian
can be made more precise. To this purpose, we consider a system with infinite
degrees of freedom and the associated “free” Hamiltonian

H0 =
∑
i

ωi a
∗
i ai,

where ωi denotes the energy of the free i-th excitation. We also assume that
there is an energy (or mass) gap, i.e.

ωi ≥ m > 0, ∀i.
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Then, if we look for a representation of the algebra generated by the aj , a∗
j ,

such that H0 is a self adjoint operator (on the common dense domain), the
representation is necessarily a Fock representation. In fact, (the series which
defines) H0 dominates (term by term the series which defines) N

N ≤ (1/m)H0

and therefore the existence of H0 entails the existence of N .

Example 1. As an example, we briefly review the quantization of a free
massive scalar real field. The problem is to find the (operator-valued distri-
butional) solution of the Klein-Gordon equation

(� +m2)ϕ(x) = 0,

satisfying the equal time canonical commutation relations (π(x) = ϕ̇(x))

[ϕ(x, 0), π(y, 0) ] = i δ(x − y),

[ϕ(x, 0), ϕ(y, 0) ] = [π(x, 0), π(y, 0) ] = 0. (2.8)

In contrast with the classical case, the canonical relations (2.8) imply that
in order to get well defined operators one must (at least) smear the fields
with test functions of the space variables, typically f ∈ C∞(Rs), s = space
dimensions and of fast decrease, (briefly f ∈ S(Rs)). Thus, from a mathe-
matical point of view the fields ϕ(x), π(x) have to regarded as operator valued
distribution.

The algebra AW of canonical variables can be thought of as generated
by the exponentials of the real fields ϕ(f), π(g), smeared with test functions
f, g ∈ S(Rs). Among the many possible representations of such an infinite
dimensional Weyl algebra, a selection criterium is that one has a well defined
Hamiltonian.

Now, quantization of the classical Hamiltonian

H = 1
2

∫
dsx [(∇ϕ)2(x) + π2(x) +m2 ϕ2(x)],

requires some care, because the above formal integral involves both the def-
inition of the product of distributions at the same point (ultraviolet (UV)
singularities) and the integration over an infinite volume (infrared (IR) singu-
larities). Thus in contrast with the standard case of finite degrees of freedom,
quantization of the classical expressions requires a regularization and/or a
renormalization.

In the case of free fields, the UV renormalization of the Hamiltonian is
regarded as trivial (the problem is not even mentioned in most text-books):
it is obtained by reordering the products of operators, say AB, so that the
creation operators stay on the left and the annihilation operators on the right
as if they commute; such a procedure is called Wick ordering and denoted
by : AB :. Then, in a finite volume with periodic boundary conditions the
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momentum can take only discrete values kj and one has (ωj ≡ (k2
j +m2)1/2),

Hren = 1
2

∫
V

dsx : [(∇ϕ)2(x) + π2(x) +m2 ϕ2(x)] :=
∑
j

ωja
∗
j aj ,

where
√

2 aj ≡ √
ωjϕ̃(kj)+ i(√ωj)−1 π̃(kj), and the tilde denotes the Fourier

transform. By the above argument, the condition that H0 be well defined
selects the Fock representation.58 It is not difficult to show that one has a
well defined operator also in the infinite volume limit, when the momentum
becomes a continuous variable and

H0 = 1
2

∫
dsx : [(∇ϕ)2(x) + π2(x) +m2 ϕ2(x)] :

=
∫
dsk ω(k) a∗(k) a(k), ω(k) = (k2 +m2)1/2

is well defined on the dense domain obtained by applying the polynomial
algebra of the a∗(f) to Ψ0, since H0 Ψ0 = 0 and the commutator is well
defined [H0, a

∗(f) ] = a∗(ωf).
The massless case, m = 0, deserves a comment, since the number operator

is no longer dominated by the free Hamiltonian. In fact, in this case there
are representations (the so called non-Fock coherent state representations) in
which H0 is well defined, but N is not.

58 H.J. Borchers, R. Haag and B. Schroer, Nuovo Cim. 29, 148 (1963). For a gen-
eral look at free fields from the point of view of representations of the alge-
bra of canonical variables (canonical quantization), see A.S. Wightman and S.
Schweber, Phys. Rev. 98, 812 (1955); S.S. Schweber, Introduction to Relativistic
Quantum Field Theory, Harper and Row 1961.



3 Non-Fock Representations

As anticipated in the previous discussions, the Fock representation is very
special to the finite dimensional case and to free fields. Actually, as a conse-
quence of Proposition 2.1, non-Fock representations are required in order to
describe many particle systems with non-zero density in the thermodynamical
limit

N → ∞, V → ∞, N/V ≡ n �= 0.

In fact, in the Fock representation, ∀Ψ in the domain of N , if NV denotes
the (operator) number of particles in the volume V , one has

||nΨ || = lim
V→∞

V −1 ||NV Ψ || ≤ lim
V→∞

V −1 ||N Ψ || = 0.

Actually, for systems of non-zero density, in the thermodynamical limit, the
free Hamiltonian need not be defined even in the free case; only the energy
per unit volume is required to be finite.59

In the following, we shall present arguments, on the basis of simple ex-
amples, which indicate the need of non-Fock representation, also for systems
with zero density, in order to get well defined Hamiltonians.

Quite generally, in the case of interacting fields, the definition of the formal
Hamiltonian, typically of the form (in a finite volume)

H =
∑
i

ωi a
∗
i ai + gHint(a, a∗) (3.1)

could in principle be easily obtained if one could find the annihilation and
creation operators Ai, A∗

i , corresponding to so called normal modes which
diagonalize the Hamiltonian:

H =
∑
i

EiA
∗
i Ai + E0, (3.2)

where E0 is a constant. In quantum field theory, such normal mode operators
59 For the mathematical discussion of the free Bose gas and for the free fermion gas

see H. Araki and E.J. Woods, Jour. Math. Phys. 4, 637 (1963); H. Araki and W.
Wyss, Helv. Phys. Acta 37, 139 (1964). For a general account, see O. Bratteli and
D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics,Vol.II,
Springer 1996. A simple discussion is given in Sect. 7.2.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 81–87
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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are the so called asymptotic fields Aasi , A
as∗
i , (as = in/out related by the S-

matrix).60

By the argument of the previous section, in the general case of mass gap,
the Hamiltonian (3.2) is a well defined operator only if one uses a Fock rep-
resentation for the Aasi , A

as∗
i , i.e. a representation defined by a Fock vacuum

Ψ0 for the asymptotic fields

Aasi Ψ0 = 0, ∀i.

Such a representation is almost never a Fock representation for the original
canonical variables which instead diagonalize the free part H0 of the Hamilto-
nian. In this case, in the representation in which H is well defined, H0 cannot
be well defined (only the sum H0 + g Hint is so). Thus, from a mathematical
point of view, due to the infinite number of degrees of freedom, the interaction
is almost never a small perturbation with respect to the free Hamiltonian.

The above arguments against the use of the Fock representation for the
canonical variables a, a∗, in terms of which the model is formally defined,
can be turned into a theorem (Haag theorem). To this purpose, we consider
systems described by canonical variables or fields which have localization
properties, i.e. which can be written in the form

ai = ψ(fi) =
∫
dsx fi(x)ψ(x), [ψ(x), ψ∗(y)] = δ(x − y), (3.3)

where {fi} is an orthonormal set of real L2 regular functions, e.g. fi ∈ S(Rs).
This is the case of systems described by canonical variables ai, a∗

i as-
sociated to free elementary or single particle excitations described by the
quantum number i. Then, if {fi} denote a set of (real orthonormal) single
“particle” wave functions, (i.e. fi describes the free particle or elementary
excitation in the i-state), one may introduce the following canonical fields

ψ(x) ≡
∑
i

ai fi(x), ψ∗(x) ≡
∑

a∗
i fi(x) (3.4)

and therefore obtain (3.3).
For the algebra generated by canonical variables of the above form, the

space translations αa are naturally defined by

αa (ψ(fi)) = ψ(fia), fia(x) ≡ fi(x − a), (3.5)

formally equivalent to αa(ψ(x)) = ψ(x + a). Clearly, the space translations
define (a one-parameter group of) *-automorphisms (or algebraic symmetries)
of the algebra of canonical variables. In each irreducible Fock representation
60 For the general (and rigorous) theory see R. Jost, The General Theory of Quan-

tized Fields, Am. Math. Soc. 1965. Unfortunately, the knowledge of the asymp-
totic fields is essentially equivalent to the control of the full solution.
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the Fock state is the unique translationally invariant state61 and the space
translations are implemented by (strongly continuous) unitary operators U(a)

U(a)ψ(x)U(−a) = ψ(x + a). (3.6)

We briefly sketch Haag’s theorem62. We consider a system described by
canonical variables of the form (3.3) and by a Hamiltonian of the form (3.1),
with g �= 0, invariant under space translations. We denote by πg an irreducible
representation of the algebra of canonical variables in which H is well defined
and it has a translationally invariant ground state Ψ0g. Then, by the argument
following the GNS theorem, the space translations are implemented by (a
one-parameter group of) unitary operators Ug(a) leaving the ground state
invariant. If πg is a Fock representation for the ai, a∗

i , then there exists a
Fock vacuum Ψ0 and Ug(a) = Ug=0(a) ≡ U(a). In fact UgU−1 commutes
with the ai, a∗

i and by irreducibility it must be a multiple of the identity
exp (iθg(a)); moreover, the group law and the continuity in a implies that
θg(a) = θg a and therefore by a trivial redefinition of Ug(a) one may get
Ug = U . This implies that Ψ0g = Ψ0, i.e. the ground state is independent
of the coupling constant. It is intuitively clear that it can hardly be so and
actually for relativistic systems the above coincidence of the interacting and
the free ground states is compatible only with a free theory.63

The implications of Haag’s theorem about the impossibility of using the
Fock representation for defining the Hamiltonian in the presence of inter-
action, are rather strong. The standard Rayleigh-Schroedinger perturbative
expansion in terms of eigenstates of the free Hamiltonian H0 requires that H0
be well defined and this is not possible if the representation in which the total
Hamiltonian is well defined is non-Fock. In particular, from a mathematical
point of view, Haag’s theorem excludes the existence of the so called interac-
tion picture representation, which is at the basis of the standard expansion
in quantum field theory and in many body theory. In fact, the existence of
the interaction picture is equivalent to the statement that (the representation
of) the field operators at time t is unitarily equivalent to (the representation
of) free fields and, by the Borchers-Haag-Schroer result discussed above, the
latter require a Fock representation; in conclusion, at each time t the rep-
resentation of the interacting field operators should be equivalent to a Fock
representation, contrary to Haag’s theorem.
61 In fact, since the number operator commutes with the space translations, the

existence of space translationally invariant states can be discussed in each
eigenspace of N , say HK , corresponding to the eigenvalue K, whose vectors
are L2(RsK) functions of sK variables. The space translation invariance would
require that such a function does not depend on the sum of the variables, incom-
patibly with being in L2.

62 R. Haag, On quantum field theories, Dan. Mat. Fys. Medd. 29 no 12 (1955);
Local Quantum Physics, Springer 1996.

63 R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That,
Benjamin-Cummings 1980.



84 Part II: Symmetry Breaking in Quantum Systems

Thus, the solution of the dynamical problem for infinite systems is much
more difficult (especially from a mathematical point of view) than in the fi-
nite dimensional case, where it is essentially controlled by Kato’s theorems64.
In the infinite dimensional case, one faces the puzzling situation that in order
to give a meaning to the Hamiltonian, as an operator in a Hilbert space H,
one must specify the representation of the operators a, a∗ (or of the fields
at time zero), in terms of which H is formally defined. On the other hand,
the representation of the a, a∗, in which the dynamics is well defined, is in
general non-Fock and its determination involves a non-perturbative control
on the theory. This looks as a blind alley. A possible way out of these con-
ceptual difficulties (and also a possible way to recover some of the results
of the perturbative expansion) is provided by the constructive strategy65. As
already mentioned above, the strategy is to regularize the theory by introduc-
ing UV and IR cutoffs and to determine the (cutoff-dependent) counter terms
needed to get a renormalized Hamiltonian, so that the corresponding (ground
state) correlation functions have a reasonable limit when the cutoffs are re-
moved. This is the content of the so called non-perturbative renormalization,
which has been successfully carried out in quantum field theory models in
low space-time dimensions (d = 1 + 1, d = 2 + 1).66 A simple model, in
which such a non-perturbative renormalization can be instructively checked
to work, and which also displays the occurrence of non-Fock representations,
is the so called Yukawa model of pion-(heavy)nucleon interaction67.

To give at least the flavor of how non-Fock representations arise, we list
a few simple examples.

Example 2. Quantum field interacting with a classical source. We consider
a quantum scalar field interacting with a classical or external (time indepen-
dent) real source j(x)

(� +m2)ϕ(x) = gj(x), (3.7)

where ϕ satisfies the equal time canonical commutation relations (2.8). The
formal Hamiltonian is (ω(k) ≡ (k2 +m2)1/2)

H =
∫
dk ω(k) a∗(k) a(k) +

g

(2π)3/2

∫
dk

[ a(k) + a∗(−k)]√
2ω(k)1/2

j̃(k). (3.8)

64 For a beautiful extensive discussion see M. Reed and B. Simon, Methods of Mod-
ern Mathematical Physics, Vol.II (Fourier Analysis, Self-Adjointness), Academic
Press 1975, Chap. X; for a sketchy account see e.g. [SNS 96].

65 A.S. Wightman, Introduction to some aspects of the relativistic dynamics of
quantized fields, in Cargèse Lectures in Theoretical Physics, M. Levy ed., Gordon
and Breach 1967, esp. Part II, Chap. VI; Constructive Field Theory. Introduction
to the Problems, in Fundamental Interactions in Physics and Astrophysics, G.
Iverson et al. eds., Plenum 1972. Constructive Quantum Field Theory, G. Velo
and A.S. Wightman eds., Springer 1973.

66 See J. Glimm and A. Jaffe, Quantum Physics, Springer 1981 and references
therein.

67 See e.g. [S 85] Part A, Sect. 2.3.
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It is easy to see that the following “normal mode” operators

A(k) = a(k) + g (2π)−3/2 ¯̃j(k)ω(k)−3/2/
√

2

bring the Hamiltonian to the diagonal form

H =
∫
dk E(k)A∗(k)A(k) + E0,

with E(k) = (k2 +m2)1/2 and

E0 = − 1
2g

2 (2π)−3 (1/2)
∫
dk |j̃(k)|2 ω(k)−2.

If the current j(k) does not decrease sufficiently fast when k → ∞, as it
happens for a point-like source (see below), E0 is a divergent constant and it
must be subtracted out by the addition of a suitable counterterm, in order
to get a well defined Hamiltonian when the cutoffs are removed.

As we shall check below by an explicit calculation, the Fock representation
for the normal mode operators A∗, A is also a Fock representation for a∗, a
only if

ω(k)−3/2 j̃(k) ∈ L2(R3). (3.9)

This condition may fail for UV reasons, namely if, for large k, j̃(k) → const;
this is what happens in the case of local interactions with a point-like source,
j(x) = δ(x). The impossibility of having a Fock representation for both the
time zero fields a∗, a and for the asymptotic fields A∗, A may also occur for
IR reasons, namely if ω(k)−3/2 j̃(k) is not square integrable around k = 0.
This is indeed what happens in the massless case, m = 0, if

Q ≡
∫
dx j(x) = j̃(0) �= 0.

This feature characterizes the Bloch-Nordsieck model of the infrared diver-
gences of quantum electrodynamics (see below).

In both cases the ground state Ψ0 of the total Hamiltonian, and the states
of the representation defined by it, cannot be described in terms of the number
of excitations, which are eigenstates of the free Hamiltonian, since

N =
∫
dk a∗(k) a(k)

does not exist as a well defined selfadjoint operator. In the case of mass
gap, m �= 0, also H0 does not exists and in fact the Rayleigh-Schroedinger
perturbative expansion is affected by divergences. For example, the expansion
of Ψ0 in terms of eigenstates of the free Hamiltonian would be

Ψ0 = Z1/2
∞∑
n=0

1
n!

(
− g

(2π)3/2

∫
dk

¯̃j(k)√
2ω3/2

a∗(k)

)n
Ψ0F , (3.10)
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where Ψ0F is the ground state of H0, the Fock vacuum, and

Z = exp
[ −g2

(2π)3

∫
dk

|j̃(k)|2
2ω(k)3

]
. (3.11)

The integral in the exponent is divergent, and therefore Z vanishes if the
condition of (3.9) does not hold.

It is worthwhile to remark that in this case for each value of the coupling
constant g, one has an inequivalent representation, since the asymptotic fields
Ag, Ag′ , corresponding to two different values g, g′ of the coupling constant
are related by

Ag′ = Ag + (g′ − g) j̃(k)/[(2π)3/2
√

2ω(k)3/2 ],

so that the Fock representation for Ag cannot also be so for Ag′ , when-
ever (3.9) does not hold.

Example 3. The Bloch-Norsdieck model. The Bloch-Nordsieck (BN) model
describes the (quantum) radiation field associated to a (classical) charged
particle which moves with constant velocity v for t < 0 and with velocity v′

for t > 0 (idealized scattering process). The equations of motion are

�A(x, t) = j(x, t), (3.12)

which are equivalent to

i da(k, t)/dt = ω(k)a(k, t) + (2ω)−1/2j̃(k, t), (3.13)

where

a(k, t) ≡ (2ω)−1/2 [ω(k)A(k, t) + iȦ(k, t)], ω(k) = |k|,
j(x, t) = ev′ θ(t) δ(x − v′t) + ev θ(−t)δ(x − vt).

The solution is

a(k, t) = e−iωt [eiωt0a(k, t0) + (2ω(k))−1/2
∫ t

t0

dt′ eiωt
′
j̃(k, t′)]. (3.14)

By taking the asymptotic limit t0 → −∞ one gets the relation between the
interacting field and the asymptotic in-field, e.g. for t > 0,

a(k, t) = e−iωt
(

ain(k) +
e√
2ω

[
v′ e

i(ω−k·v′)t − 1
ω − k · v′ + v

1
ω − k · v

])

≡ e−iωt [ain(k) + f(k, t)].

Since f(k, t) /∈ L2(R3) a Fock representation for a,a∗ cannot be a Fock repre-
sentation for ain, a∗

in and conversely. In this (massless) case both possibilities
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are allowed, since the existence of the free Hamiltonian for the asymptotic
fields does not require a Fock representation for them.

The physical meaning of the above result is rather basic; in a scattering
process of a charged particle the emitted radiation has a finite energy but
an infinite number of “soft” photons, in the sense that for any finite ε the
number of emitted photons with momentum greater than ε is finite, but the
total number of emitted photons is infinite

lim
ε→0

∫
|k|≥ε

dk < a∗(k) · a(k) >= ∞.

Such states with an infinite number of soft photons cannot be described
in terms of an occupation number representation, but rather in terms of a
classical radiation field f (which accounts for the low energy electromagnetic
field) and hard photons. Such states are called coherent states and have been
extensively studied in quantum optics.68 The corresponding representation
πf of the creation and annihilation operators a∗,a can be obtained from the
Fock representation πF by means of the following coherent transformation
(morphism)

ρ(a(k)) = a(k) + f(k), πf (a(k)) = πF (ρ(a(k))),

where f is the classical radiation field.
The realization of the above basic (physical) mechanism, well displayed

by the BN model, has led to the (non-perturbative) solution of the infrared
problem in quantum electrodynamics. The charged (scattering) states define
non-Fock coherent representations of the asymptotic electromagnetic alge-
bra.69 If this type of states are used to define the scattering amplitudes one
gets finite results, when the infrared cutoff is removed, also in (the corre-
spondingly adapted) perturbation theory.70

Other examples of non-Fock representations are provided by models with
a non-vanishing ground state expectation value of the scalar field

ϕ(x, 0) =
∫
dk eik·x [ a(k) + a∗(−k) ](2ω(k))−1/2,

since if the representation is Fock for the canonical variables a, a∗, by Haag’s
argument the ground state must coincide with the Fock vacuum and the
latter gives vanishing expectation of a and a∗.
68 R.J. Glauber, Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 131, 2766 (1963); for

an elementary account see e.g. [S 85].
69 V. Chung, Phys. Rev. 140B, 1110 (1965); J. Fröhlich, G. Morchio and F. Stroc-

chi, Ann. Phys. 119, 241 (1979); G. Morchio and F. Strocchi, Nucl. Phys. B211,
471 (1984); for a review see G. Morchio and F. Strocchi, Erice Lectures, in Fun-
damental Problems of Gauge Field Theory, G. Velo and A.S. Wightman eds.,
Plenum 1986.

70 T.W. Kibble, Phys. Rev. 173, 1527; 174, 1882; 175, 1624 (1968) and references
therein.



4 Mathematical Description
of Infinitely Extended Systems

From the discussion of the previous chapter it appears that the description of
infinite systems looks much more difficult than in the finite dimensional case,
above all because of the existence of (too) many possible representations of
the algebra of canonical variables. A big step in the direction of controlling
the problem has been taken by Haag et al., who emphasized the need of
exploiting crucial physical properties of the algebra of observables in order
to restrict their possible representations to the physically relevant ones. The
crucial ingredient is the localization property of observable operations.

4.1 Local Structure

Any physically realizable operation is necessarily localized in space, since we
cannot perform measurements or act on the system over the whole space. In
order to encode this property in the structure of the algebra of observables,
it is convenient to view it as generated by canonical variables or observables
which have localization properties71. Thus, for each bounded space region
V , one has the C∗-algebra A(V ) of all observables (or canonical variables)
localized in V .

A concrete realization of such a structure is obtained by considering
canonical variables which have localization properties in the sense of (3.3).
For regular test functions f, g of compact support contained in V , (typically
f, g ∈ D(V )), one considers the set of localized canonical variables

a(f) ≡
∫
dx ψ(x) f̄(x), a∗(g) =

∫
dx ψ∗(x) g(x),

where ψ(x) is a field “strictly localized in x” (see (3.3)). The algebra generated
by such variables can be taken as the Heisenberg algebra localized in V .
Similarly, a Weyl algebra localized in V is generated by the exponentials of

71 For a general discussion of this strategy see R. Haag, Local Quantum Physics,
Springer 1996.
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the above localized canonical variables

U(f) = exp [i (a(f) + a(f)∗)], V (g) = exp [a(g) − a(g)∗ ].

Quite generally, the association V → A(V ) realizes the identification of
the algebras of observables localized in the volume V as V varies. The con-
sistency of the physical interpretation requires that such a mapping satisfies
the so called isotony property, namely A(V1) ⊆ A(V2), whenever V1 ⊆ V2.

The physically motivated concept of localization has an algebraic trans-
lation in terms of commutation relations. For (equal time) space localization,
the local structure of the algebras A(V ) is formalized by the property

[ A(V ), A(V ′) ] = 0, if V ∩ V ′ = ∅. (4.1)

For relativistic systems it is more convenient to introduce algebras localized in
bounded (open) space time regions O (usually taken as causally complete as
it is the case of the diamonds or double cones72). Then the locality property
reads

[ A(O1), A(O2) ] = 0, (4.2)

whenever O2 is spacelike with respect to O1, briefly O2 ⊂ O′
1 ≡ the causal

complement of O1. For observable algebras this is the mathematical formu-
lation of Einstein causality.73

The union of all A(V ) (or A(O)) is called the local algebra

AL ≡ ∪VA(V), V = V, or = O. (4.3)

We have already argued before that it is convenient (if not necessary) to have
a C∗-algebra and therefore one has to complete AL. As we shall see, this is
a delicate point having deep connections with the dynamics and the physical
description of the system. The most natural and simple choice is to consider
the norm closure

A ≡ AL. (4.4)

The norm closure leads to the smallest C∗-algebra generated by strictly local
elements, all other topologies, like the (ultra-)strong and the (ultra-)weak
being weaker, and therefore it gives the C∗-algebra with best localization
properties. For this reason the norm closure A is called the quasi local algebra.

Since the time evolution is one of the possible physically realizable opera-
tions, in order to have a consistent physical picture, the algebra of observables,
72 A set O of points is causally complete if it coincides with its double causal

complement, i.e. if O′ (called the causal complement of O) denotes the set of all
points which are spacelike with respect to all points of O, one has O = (O′)′.

73 This concept of localization should not be confused with the problems discussed
in connection with the Einstein-Podolski-Rosen paradox, see R. Haag, in The
Physicist’s Conception of Nature, J. Mehra ed., Reidel 1973; Local Quantum
Physics, Springer 1992, p.107; A.S. Wightman, in Probabilistic Methods in Math-
ematical Physics, F. Guerra et al. eds.. World Scientific 1992.
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and consequently its localization properties, must be stable under time evo-
lution. We shall therefore take for granted that the time evolution defines a
one-parameter group αt, t ∈ R of *-automorphisms of the algebra of observ-
ables. Furthermore, we shall restrict our attention to systems for which also
the space translations αx, define *-automorphisms of the observable algebra.

For systems with a dynamics characterized by a finite propagation speed,
the norm closure of AL is stable under time evolution and therefore the
quasi local algebra is a good candidate for the algebra of observables. This
is the case of lattice spin systems with short range interactions74 as well as
the case of relativistic systems, since for them the causality requirement for
the observables imply that under time evolution strictly local algebras are
mapped into strictly local ones.

On the other hand, for non-relativistic systems the speed of propagation
is in general infinite (even for the free Schroedinger propagator) and there-
fore some delocalization is unavoidable. Operators which are localized in a
bounded region V at the initial time will not be so at any subsequent time,
and therefore the non-relativistic approximation necessarily requires a weaker
form of locality, and, consequently, one should take as relevant algebra A a
larger completion of AL

75. We shall return to this point later.

4.2 Asymptotic Abelianess

Independently from the possible delocalization induced by the dynamics,
strong physical reasons require that the algebra A of observables (or of the
canonical variables) has at least the following (asymptotic) localization prop-
erty, namely ∀A, B ∈ A, putting Ax ≡ αx(A),

lim
|x|→∞

[Ax, B ] = 0. (4.5)

Such property is called asymptotic abelianess (in space). The physical mean-
ing of such property is rather transparent since it states that the measure-
ment of the observable A becomes compatible with the measurement of the
observable B, in the limit in which A is translated at infinite space distance.
Clearly, the validity of such property for the algebra of observables is a neces-
sary prerequisite for a reasonable quantum description of the corresponding
system; otherwise, the measurement of the observable B would be influenced
by possible measurements of observables at infinite space distances.

Asymptotic abelianess is obviously satisfied by local relativistic systems
since in the limit |x| → ∞ the localization of Ax becomes space-like separated
74 See O. Bratteli and D.W. Robinson, loc. cit. Vol.II, Sect. 6.2. For the convenience

of the reader, a brief account is presented in the Appendix, Sect. 7.3 below.
75 D.A. Dubin and G.L. Sewell, Jour, Math. Phys. 11, 2290 (1970); G.L. Sewell,

Comm. Math. Phys. 33, 43 (1973); G. Morchio and F. Strocchi, Comm. Math.
Phys. 99, 153 (1985); Jour. Math. Phys. 28, 622 (1987).
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with respect to any fixed bounded region of space-time, and therefore the
vanishing of the commutator is a consequence of Einstein causality.

Asymptotic abelianess is clearly satisfied by the local algebra AL of a
non-relativistic system, as a consequence of (4.1). It also holds for the quasi
local algebra A defined as the norm closure of AL

76.
As stated in (4.5), asymptotic abelianess is an algebraic property (inde-

pendent of the representation); from a physical point of of view, it could be
enough to require it to hold only in a class F of physically relevant represen-
tations and therefore the limit could be taken in the weak topology77 defined
by such representations

w − lim
|x|→∞

[π(Ax), π(B) ] = 0, ∀A, B ∈ A, ∀π ∈ F . (4.6)

In the sequel, we shall take for granted that the algebra A of observables
(or of canonical variables) satisfies asymptotic abelianess, at least in the weak
form of (4.6).

In a given representation π, the validity of the above equation extends to
the case in which π(B), B ∈ A is replaced by B ∈ π(A)

s
, where the bar with

the suffix s denotes the strong closure78.
In fact, ∀Ψ, Φ ∈ Hπ and ∀ε > 0, there exists a B1 ∈ π(A) such that

||(B −B1)Φ|| ≤ ε, ||(B −B1)Ψ || ≤ ε, so that

|(Φ, [π(Ax), B]Ψ)| ≤ |(Φ, [π(Ax), B1]Ψ)| + ε ||A||(||Φ|| + ||Ψ ||)
76 In fact, if AL 	 An → A, AL 	 Bn → B,

|| [Ax, B] || ≤ || [An,x, Bm ] || + 2 ||An,x|| ||B −Bm||

+2 ||Ax −An,x|| (||Bm|| + ||B −Bm||)
and in the limit |x| → ∞, the right hand side can be made as small as one likes.

77 For the convenience of the reader we recall that for the set B(H) of all bounded
operators acting in the Hilbert space H, the weak topology is defined by the
seminorms given by the absolute values of the matrix elements of B(H) between
vectors of H, whereas the strong topology is given by the norms of the vectors
AΨ, A ∈ B(H), Ψ ∈ H, (the norm or uniform topology is defined by the operator
norm). Thus, for example An converges weakly to A, (briefly An

w→ A), if,
∀Ψ, Φ ∈ H,

(Ψ, An Φ) → (Ψ, AΦ).

On the other hand, An converges strongly to A, (briefly An
s→ A), if, ∀Ψ ∈ H,

||(An −A)Ψ || → 0.

78 D. Kastler, in Cargèse Lectures in Theoretical Physics, Vol. IV, F. Lurçat ed.,
Gordon and Breach 1967, pp. 289-302.
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and therefore in the limit |x| → ∞ the right hand side can be made as small
as one likes.79

As we shall see below, the above property of asymptotic abelianess in
the weak form (4.6) will play a crucial role in the analysis of the physically
relevant representations of the observable algebra.

79 By a similar argument one can also prove asymptotic abelianess when A and B
are strong limits of elements of some A(V ), on a common dense domain D stable
under the implementers of the space translations.



5 Physically Relevant Representations

From the examples and the discussion of the previous chapter, it appears
that for infinite systems the choice of the representation for the algebra of
canonical variables (a basic preliminary step for even defining the dynamical
problem) is a highly non-trivial problem (unless the model is exactly soluble).
Among the possible representations of the relevant algebra A it is therefore
convenient to isolate those which are physically acceptable. For the moment
we restrict our discussion to the zero temperature case. The non-zero tem-
perature case will be briefly discussed in Chap. 12. On the basis of general
physical considerations, we require the following conditions for a physically
relevant representation π.

I. (Existence of energy and momentum) The space and time transla-
tions are described by strongly continuous groups of unitary operators
U(α), U(t), α ∈ Rs, t ∈ R.
By Stone’s theorem, this guarantees the existence of the generators P
(the momentum) and H (the energy), as well (densely) defined self-ad-
joint operators in the representation space Hπ. The existence of the
energy is a necessary condition for the representation to be physically
realizable. The implementability of the space translations is also neces-
sary in relativistic quantum field theory, but could be dispensed with in
many body theory and, e.g., be replaced by the invariance under a dis-
crete subgroup of the translations. In the sequel, for simplicity, we shall
not consider such more general cases.

II. (Stability or spectral condition) The spectrum σ(H) of the Hamil-
tonian is bounded from below. The relativistically invariant form of the
spectral condition is σ(H) ≥ 0, H2 − P2 ≥ 0.
Such a property guarantees that, under small (external) perturbations,
the system does not collapse to lower and lower energy states.80

III. (Ground state) Inf σ(H) is a (proper) non-degenerate eigen-value of
the Hamiltonian. The corresponding eigenvector Ψ0, called the ground
state, has the following properties:

80 This condition is not required for non-zero temperature states, since in that case
the reservoir can feed the system and prevent it from collapsing.
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i) Ψ0 is a cyclic vector with respect to the local algebra
ii) Ψ0 is the unique translationally invariant state in Hπ

Clearly, by a trivial redefinition of H, one can get U(t)Ψ0 = Ψ0.
The ground state condition is obviously satisfied in the free case, described

by the Fock representation, with Ψ0 being the Fock no-particle state. A physi-
cal justification for the existence of a ground state, in the general case, is that
this is the state which the system should eventually reach, (when subject to
small external perturbations), since the Hamiltonian is bounded from below.

From a mathematical point of view, the cyclicity of the ground state
implies that the physically relevant representations can be obtained, through
the GNS construction, from states (on the quasi local algebra) invariant under
space and time translations, i.e. from correlation functions invariant under
space and time translations.

From a physical point of view, the cyclicity requirement means that all
the states of Hπ can be approximated, as well as one likes, by local states,
in agreement with the discussion in Sect. 4.1, i.e. the states of Hπ can be
described in terms of local operations on the ground state. In this picture, the
ground state plays the role of the reference state, all the other states being
essentially local modifications of it. This closely reflects the experimental
bounds that, given a reference state, through physically realizable operations,
one has access only to states which differ from it only locally.

Strictly speaking, the operational identification of the ground state in-
volves some idealization or extrapolation, since one cannot actually measure
or detect the properties of an infinitely extended system at space infinity. The
identification of the ground state is therefore done on the basis of economy of
the mathematical description, by extrapolating at infinity the large distance
properties of the system. For example, in the case of a one-dimensional spin
system, if all the relevant states (in a given phase) have the property that all
the spins near the boundary point in the up direction, (as can be enforced by
suitable boundary conditions), then, in the thermodynamical limit, the most
economical description of such states of the system is in terms of (quasi) local
modifications of an infinitely extended homogeneous state, in which all the
spins are in the up direction.

In conclusion, the ground state completely accounts for the large distance
behaviour of the system and this is the only ingredient which involves some
extrapolation over the local character of the physically realizable operations.

The uniqueness of the translationally invariant state in any irreducible
representation of A follows from asymptotic abelianess. The proof relies on
Von Neumann’s bicommutant theorem.81 Given a *-subalgebra A of B(H)
(the set of all bounded operators in H), the commutant, denoted by A′, is
the set of all operators in B(H) which commute with A and the bicommutant
(or double commutant) A′′ ≡ (A′)′ is the set of all operators in B(H) which

81 For a sketch of the proof see e.g. [SNS 96].
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commute with A′. Clearly, if π(A) is an irreducible representation of a C∗-
algebra A, then π(A)′ = {λ1, λ ∈ C} and π(A)′′ = B(H).

Theorem 5.1. (Von Neumann bicommutant). For a *-subalgebra A of B(H),
with identity, the following three properties are equivalent
i) A = A′′

ii) A is weakly closed (briefly A = Aw
)

iii) A is strongly closed: A = As
.

Proposition 5.2. In any irreducible representation π of the algebra A
of observables, satisfying conditions I, II, III i) and weak asymptotic
abelianess, (4.6), the ground state is the unique translationally invariant
state.

Proof. In fact, if Ψ0
′ is another translationally invariant state, which with-

out loss of generality can be taken orthogonal to Ψ0, ∀A ∈ A, (denoting by
P0 the projection on Ψ0), we have

(Ψ0
′, π(A)Ψ0) = (Ψ0

′, π(Ax)Ψ0) = (Ψ0
′, π(Ax)P0Ψ0) =

(Ψ0
′, P0 π(Ax)Ψ0) + (Ψ0

′, [π(Ax), P0]Ψ0). (5.1)

The first term on the right hand side is zero because Ψ0
′ is orthogonal to Ψ0.

The second term is independent of x and one can take the limit |x| → ∞.
Now, by Von Neumann’s theorem and irreducibility

π(A)
s

= (π(A)
s
)′′ ⊇ π(A)′′ = B(H),

so that P0 belongs to π(A)
s

and therefore, by the extension of asymp-
totic abelianess (discussed after (4.6)), the second term vanishes in the limit
|x| → ∞.

In conclusion, (Ψ0
′, π(A)Ψ0) = 0 and, by the cyclicity of Ψ0, Ψ0

′ = 0.
Under the same hypotheses, the above argument can be used to prove that

w − lim
|x|→∞

π(Ax) = (Ψ0, AΨ0)1 ≡< A >0 1, (5.2)

(sometimes, in the following equations the subscript 0 in the brackets will be
omitted for simplicity). In fact, ∀B ∈ π(A) one has, by asymptotic abelianess

w − lim
|x|→∞

π(Ax)B Ψ0 = w − lim
|x|→∞

B π(Ax)Ψ0 =

B w − lim
|x|→∞

([π(Ax), P0]Ψ0 + P0 π(Ax)Ψ0).

By the extension of asymptotic abelianess the first term on the right hand
side vanishes and the second term is equal to B Ψ0 < A >0 . Thus, the above
weak limit exists and it equals the r.h.s. of (5.2).
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The above equation (5.2) displays the fact that the ground state accounts
for the large distance behaviour of the observables.

Since irreducibility of the GNS representation defined by a state Ω is
equivalent to Ω being a pure state, the physically relevant irreducible rep-
resentations of A are also called pure phases; in fact they describe the pure
phases of the system at zero temperature, in the standard sense of statistical
mechanics. By the discussion of Sect. 4.1, they can also be interpreted as
describing disjoint worlds.

Thus, as a consequence of asymptotic abelianess, which is crucially related
to the local structure of the observables, different translationally invariant
pure states on the observable algebra identify different phases or disjoint
worlds, each characterized by different large distance (weak) limits of the
observables.



6 Cluster Property and Pure Phases

The irreducible (physically relevant) representations selected in the previous
section have a further important property, called cluster property.

Proposition 6.1. Under the same conditions of Proposition 5.2, the ground
state correlation of two quasi local operators factorize, when one is translated
at space infinity

lim
|x|→∞

[< ABx >0 − < A >0< B >0] = 0 (6.1)

The proof follows easily from (5.2).
The reasons for stressing this property are many. First, the cluster prop-

erty plays a crucial role for the foundations of the S-matrix theory in quantum
field theory.82 In fact, the possibility itself of defining a scattering process re-
quires such a factorization of the amplitude relative to clusters of fields which
are infinitely separated in space. Otherwise, a scattering process localized in
a space time region O would be influenced by a scattering taking place at
very large distances.

The physical meaning of the cluster property is that the ground state re-
acts locally to local operations, and it cannot support non-trivial correlations
between far separated observables. In a certain sense, this condition neutral-
izes the non-local content of the ground state to the effect that the latter
does not spoil the local structure of the physically realizable operations, at
the level of the correlation functions, and it is essentially confined to the
property of accounting for the large distance limits of the observables.

For representations satisfying conditions I, II, III i), one can show that
the cluster property implies irreducibility and therefore it is equivalent to it,
but, from a constructive point of view, the cluster property is much better
controlled since it can be directly read off from the knowledge of the correla-
tion functions. Thus, for zero temperature states the cluster property can be
used to identify the pure phases. Actually, as we shall see later, the cluster
82 R. Haag, Phys. Rev. 112, 669 (1958); Local Quantum Physics, Springer 1996,

esp. Sect. II.4; D. Ruelle, Helv. Phys. Acta 35, 147 (1962). For a systematic
account of the Haag-Ruelle theory see R. Jost, The General Theory of Quantized
Fields, Am. Math. Soc. 1965.
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property characterizes the pure phases also at non-zero temperature, where
irreducibility cannot hold.

The important property which makes the cluster property so relevant
(also at non-zero temperature) is that of being equivalent to the uniqueness
of the translationally invariant state. In particular, this condition (assumed
in III) appears justified also on the basis of the motivations for the valid-
ity of the cluster property discussed above and, in fact, can be replaced
by the latter.

For the proof of such an equivalence we remark that the cluster property
in the form of (6.1) states both the existence of the limit of the first term and
the property of being equal to the second. In order to make such a relation
more transparent and to point out its basic physical content, we shall first dis-
cuss a weaker form of the cluster property in which the limit in (6.1) is taken
in the Cesaro sense (weak cluster property) and we shall prove the equiva-
lence between such a weak form and the uniqueness of the translationally
invariant state.

We recall that such a weaker form of the limit (for brevity also called
mean-limit or mean ergodic limit) is defined in the following way, for locally
measurable functions (for simplicity we consider the case of one variable):

mean − lim
|x|→∞

f(x) ≡ lim
L→∞

L−1
∫ L

0
dx f(x). (6.2)

The limit can easily be proved to exist for a large class of functions, e.g. if
the Fourier transform of f is a finite measure. It is clear that the values taken
by f in any bounded interval [0, L0] do not affect the right hand side since
the latter is also equal to

lim
L→∞

L−1
∫ L

L0

dx f(x).

The only thing which matters for the limit is the behaviour of f at infinity
and clearly, if f(x) has a limit in the ordinary sense, the mean-limit coincides
with it.

Theorem 6.2. In any representation π defined by a translationally invariant
state and satisfying weak asymptotic abelianess, the weak cluster property,

lim
|V |→∞

|V |−1
∫
V

dx [< ABx > − < A >< B >] = 0, (6.3)

where V is a bounded (regular) region centered at the origin, e.g. a sphere or
a cube, |V | denotes the volume of V and the limit is taken by expanding it
equally in all directions, is equivalent to the uniqueness of the translationally
invariant state.
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Proof. The proof exploits the continuous version of Von Neumann’s ergodic
theorem,83 according to which, if U(x) is a group of unitary (translation)
operators in a Hilbert space H,

mean − lim
x→∞ U(x) = Pinv, (6.4)

where Pinv denotes the projection on the subspace Hinv of U(x) invariant vec-
tors (and the limit exists in the strong topology)84. A simple consequence85

of such a theorem is that

lim
|V |→∞

|V |−1
∫
V

dxU(x) = Pinv, (6.5)

with Pinv the projection on the subspace of vectors, which are invariant
under U(x), ∀x ∈ Rs. It then follows trivially that (6.3) holds iff Pinv is one-
dimensional, i.e. there is only one state invariant under space translations
and therefore Pinv = P0 (the projection on the ground state).

In order to get the equivalence between the uniqueness of the translation-
ally invariant state and the cluster property in the (strong) form of (6.1), one
has to control the limit |x| → ∞. The existence of such a limit in the weak
sense is guaranteed if the representation has the property that the center

Z ≡ π(A)′ ∩ π(A)′′

is pointwise invariant under space translations.
The pointwise invariance of the center under space translations follows

from the relativistic spectral condition86, and one may argue about its validity
83 See e.g. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol.

I, Academic Press 1972, Sect. 11.5.
84 The point is that oscillatory behaviours are killed by the mean limit and only

the zero frequency part survives. We briefly sketch the proof. Equation (6.4)
trivially holds on Hinv, so that by the linearity of U(x) it remains to check it on
H⊥

inv, which is equal to the closure of {(1 − U(x))H, x ∈ R}, since U(x)Ψ = Ψ
implies U(x)∗Ψ = Ψ and for a vector Ψ , the condition of being in Hinv, i.e.
((1 −U(x)∗)Ψ, H) = 0, ∀x, is equivalent to (Ψ, (1 −U(x)) H) = 0, ∀x. Now, for
vectors of the form Ψ = (1 − U(y))Φ, the integral occurring in the mean limit
reads∫ L

0
dx (U(x) − U(x+ y))Φ = (

∫ L

0
−

∫ L+y

y

)dxU(x)Φ = (
∫

V1

−
∫

V2

)dxU(x)Φ,

where V1 ≡ [0, L] \ ([y, L+ y] ∩ [0, L]), V2 ≡ [y, L+ y] \ ([y, L+ y] ∩ [0, L]). Then,
the norm of the l.h.s. of (6.4) applied to Ψ = (1 − U(y))Φ is bounded by

L−1 |([0, L] ∪ [y, L+ y])/([y, L+ y] ∩ [0, L])| ||Φ|| −→
L→∞

0.

85 It suffices to apply the theorem to each variable xi, i = 1, 2, ...s, by e.g. integrating
U(x1, x2, ...xs) over V1 × V2 × ...Vs.

86 H. Araki, Prog. Theor. Phys. 32, 884 (1964).
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for non-relativistic systems. The important physical property following from
it is that the existence of the weak limits imply that they coincide with the
ergodic averages

w − lim
V→∞

V −1
∫
V

dxαx(A), (6.6)

which describe macroscopic observables (for simplicity V denotes both the
bounded region and its volume).

A special case in which the pointwise (space translation) invariance of the
center obviously holds is that of the so called factorial representations, defined
by the condition of having a trivial center: Z = {λ1, λ ∈ C}. The class of
factorial representations includes in particular the irreducible representations
(for which π(A)′ = {λ1, λ ∈ C}), but is much more general; in fact, it can
be taken as the mathematical characterization of the pure phases, also at
non-zero temperature (where the representation cannot be irreducible). The
physical motivation for such a choice is that the ergodic decomposition of a
representation with respect to the space translations87 automatically leads
to definite values for the macroscopic observables.

Proposition 6.3. In any representation defined by a translationally invari-
ant state, satisfying weak asymptotic abelianess, with the property that the
center Z is pointwise invariant under translations, one has

w − lim
|x|→∞

AxBΨ0 = B Pinv AΨ0, (6.7)

where Pinv denotes the projection on the subspace on translationally invariant
vectors and the symbols A, B denote the representatives in the given repre-
sentation.

Proof. One can essentially use the same argument as in the derivation
of (5.2), with P0 replaced by the projection Pinv. In fact, ∀B ∈ π(A),

AxB Ψ0 = {[Ax, B ] +B [Ax, Pinv] +BPinv Ax}Ψ0 (6.8)

and in the limit |x| → ∞, the first term vanishes by asymptotic abelianess,
and the last term is independent of x.

Thus, one has to discuss the weak limit of the second term. To this pur-
pose, one notes that ||Ax|| = ||A||, since the space translations are auto-
morphisms of A and therefore norm preserving. Then, by a compactness
argument there are subsequences {Axn}, |xn| → ∞, which have weak limits
z{xn}. By asymptotic abelianess such weak limits belong to the center Z and
(by hypothesis) commute with the spectral projections of U(x), in particular
with Pinv. Thus, for all convergent subsequences

w − lim
|xn|→∞

[Axn , Pinv] = 0, (6.9)

87 See O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical
Mechanics, Vol.1. Springer 1987, Sect. 4.3.
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This implies that the second term in (6.8) converges to zero since otherwise
there is an ε > 0, a pair Ψ, Φ ∈ H and a sequence {yn}, |yn| → ∞, such that
(Ψ, [Ayn

, Pinv ]Φ)| > ε for all |yn| sufficiently large; by the compactness
argument the sequence {Ayn} has a convergent subsequence which would
therefore not satisfy (6.9). In conclusion, the weak limit |x| → ∞ of the left
hand side of (6.8) exists and (6.7) holds.

Proposition 6.4. In a representation defined by a translationally invariant
state, satisfying weak asymptotic abelianess, with the center pointwise invari-
ant under space translations, the cluster property (6.1) is equivalent to the
uniqueness of the translationally invariant state.

In a factorial representation the translationally invariant state is unique.

Proof. It follows easily from (6.7) that the cluster property holds iff Pinv is
one-dimensional. For factorial representation (6.7) holds with Pinv replaced
by the projection P0 on the translationally invariant vector state Ψ0, which
defines the representation, since the (trivial) center obviously commutes with
P0 and therefore the cluster property holds.

It is worthwhile to remark that irreducibility is a much too strong condi-
tion for non-isolated systems, like those in thermodynamical equilibrium at
non-zero temperature, which requires a heat exchange with the reservoir (or
thermal bath). The GNS representation defined by a translationally invariant
equilibrium state has the property that the equilibrium vector state is cyclic
with respect to the observable algebra, but there are operators (e.g. those
describing the “dynamical variables” of the reservoir) which commute with
the observables of the system and therefore irreducibility fails. However, if
the representation is factorial, by the above Proposition the translationally
invariant equilibrium state cannot be decomposed as a convex combination of
other traslationally invariant states and in this sense describes a pure phase.
We shall return to non-zero temperature states later.

The physically motivated factorization of the correlation functions of in-
finitely separated observables does not require irreducibility, but rather the
uniqueness of the translationally invariant state, which holds if the represen-
tation is factorial.

As it is clear from the above discussion, in a factorial representation,
defined by a traslationally invariant equilibrium state, the ergodic averages
of observables are c-numbers and coincide with the expectation values of
the observables on the equilibrium state. Such a state therefore encodes the
information on the macroscopic observables, as well as the large distance
behaviour of the observables.

In the next section we shall confront the general framework discussed
above with some concrete examples.
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7.1 Spin Systems with Short Range Interactions

As mentioned before, the quantum mechanics of infinite systems is not un-
der mathematical control as it is in the finite dimensional case. A non-
perturbative control has been achieved for quantum field theories in low
space-time dimensions (d = 1+1, d = 2+1), but the question is still open
in d = 3+1 dimensions and the triviality of the ϕ4 theory indicates that the
perturbative expansion is not reliable for existence problems. It is clear that
the existence of a non-trivial dynamics for systems with infinite degrees of
freedom is not a trivial problem, but for non-relativistic systems some result
is available. As a matter of fact, for spin systems with short range interactions
the infinite volume dynamics αt has been shown to exist.88

To give an idea of how the problem is attacked and solved we first con-
sider the simple case of a one-dimensional chain of spins (a one-dimensional
“ferromagnet”) with a formal Hamiltonian of Ising type

H = −J
∑
i, j

σi σj , J > 0, (7.1)

where the sum is over all the nearest neighbor pairs of indices i, j, which
denote the chain sites and σ denotes the component of the spin along the z
direction.

The local algebra of observables is generated by the spin operators σ at the
various sites; in particular for each volume V the algebra A(V ) is the algebra
generated by the spins sitting in the sites i ∈ V .89 Since spins at different
sites are assumed to commute, the localization condition (4.1) obviously holds
and asymptotic abelianess is satisfied by the quasi local algebra A (the norm
closure of the local algebra).

The first non-kinematical question is the existence of the time evolution
and the stability of A under it. To this purpose, as discussed before, we replace
the formal (ill defined) Hamiltonian (7.1) with the (infrared regularized) finite

88 D.W. Robinson, Comm. Math. Phys. 7, 337 (1968).
89 For a detailed discussion of the mathematical structure of spin models see

O. Bratteli and D.W. Robinson, loc. cit. Vol. 2, Sect. 6.2.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 105–113
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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volume Hamiltonian

HV ≡ −J
∑

(i,j)∈V
σi σj , (7.2)

which is well defined since it involves only a finite number of terms. Then we
consider the finite volume dynamics

αVt (A) ≡ eiHV tAe−iHV t, A ∈ AL (7.3)

and try to define the infinite volume dynamics as a limit of αVt when V → ∞.
The idea is that for A ∈ A(V0), V0 fixed, the above transformation αVt (A)

becomes independent of V for V large enough, thanks to (4.1) and the nearest
neighbor coupling. Thus, the limit of αVt (A) exists in norm and it defines
a time evolution αt as an automorphism of the local algebra, which can
be extended to an automorphism of the quasilocal algebra A, since it is
norm preserving. The existence of the time evolution as a norm limit of
finite volume dynamics has been proved quite generally for any lattice spin
Hamiltonian with short range interactions, i.e. with absolutely summable spin
interaction potentials.90 For example, in d = 3 space dimensions, such short
range interactions include Hamiltonians of the form

H =
∑
i,j

Jij σi · σj .

provided the potential Jij decreases at least as |i− j|−3−ε, ε > 0.
Essentially the same logic applies to Hamiltonians which are local func-

tions of canonical variables or fields which satisfy the locality condition (4.1)
or (4.2), respectively. This is the case of UV regularized quantum field theo-
ries, for which the infinite volume limit of the time evolution of local operators
can be proved to exist by locality.91

7.2 Free Bose Gas. Bose-Einstein Condensation

The Bose-Einstein condensation is the very important collective effect at the
basis of the phenomenon of superfluidity92 and it provides an interesting
example of an infinite system also at the level of the free Bose gas.

90 D.W. Robinson, Comm. Math. Phys. 7, 337 (1968). For the convenience of the
reader, also due to the conceptual relevance of the result, a sketch of the proof
is given in the Appendix below.

91 M. Guenin, Comm. Math. Phys. 1, 127 (1966); I.E. Segal, Proc. Nat. Acad. Sci.
USA, 57, 1178 (1967).

92 For a simple account see [S 85].
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The model is defined93 by the Weyl algebra A generated by the es-
sentially localized field operators ψ(f), ψ(g)∗, f, g ∈ S(Rs) (see the dis-
cussion in Sect. 4.1),

ψ(f) =
∫
dsxψ(x) f(x),

with
[ψ(x), ψ(y)∗ ] = δ(x− y), [ψ(x), ψ(y)] = 0.

The formal Hamiltonian describing a system of free bosons is

H = (1/2m)
∫
dsx |∇ψ(x)|2.

It is (formally) positive, so that if a state is annihilated by H, (more precisely
by any finite volume restriction HV of H), it is a lowest energy state. The
condition HV Ψ0 = 0, ∀V implies

∇ψ(x)Ψ0 = 0, ∀x, (7.4)

which must be solved compatibly with the condition that one has finite den-
sity.94 Equation (7.4) can be written as

0 = −i∇ψ(x)Ψ0 = [P, ψ(x)]Ψ0 = Pψ(x)Ψ0,

where we have required the translational invariance of Ψ0. The uniqueness of
the translationally invariant state requires

ψ(x)Ψ0 = c Ψ0, c = (Ψ0, ψ(x)Ψ0) ≡< ψ >, (7.5)

(a smearing with test functions would give a mathematically precise mean-
ing to the above equations).95 Therefore, the ground state defines a Fock
representation for the operators ψF , ψ∗

F defined by

ψF (x) ≡ ψ(x)− < ψ >

93 For a rigorous mathematical treatment see H. Araki and E.J. Woods, Jour. Math.
Phys. 4, 637 (1963); D.A. Dubin, Solvable models in algebraic statistical mechan-
ics, Claredon Press Oxford 1974. See also N.M. Hugenholtz, in Fundamental
Problems in Statistical Mechanics II, E.G.D. Cohen ed., North-Holland, Amster-
dam 1968, p.197 and O. Bratteli and D.W. Robinson, loc. cit. Vol. 2, Sect. 5.2.5.

94 To make the argument mathematically rigorous, one can solve the problem in
a finite volume with periodic boundary conditions and then take the thermody-
namical limit, as discussed in the references of the previous footnote.

95 Equation (7.5) is incompatible with canonical anti-commutation relations and in
fact, as it is well known, the ground state for a free Fermi gas is not annihilated
by the above free Hamiltonian.
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and one can easily compute the correlation functions of ψ,ψ∗ in terms of
those of ψF , ψ∗

F ,96 e.g.

< ψ(x)∗ ψ(y) >= | < ψ > |2, < ψ(x)ψ(y) >=< ψ >2, etc.

From the above equations it follows that < ψ > is related to the average
density

| < ψ > |2 =< ψ(x)∗ ψ(x) >= n, < ψ >=
√
n eiθ, θ ∈ [0, 2π).

The ground state can be thought as labeled by the “order parameter” < ψ >
and, in order to spell this out, we shall denote the ground state by Ψ0,n,θ or,
briefly, by Ψθ and the corresponding state on A by Ωθ, (θ ground state).

For any θ the GNS representation defined by Ωθ is irreducible because
the algebras generated by ψ, ψ∗ and by ψF , ψ

∗
F coincide and the latter is

irreducible. It is not difficult to see that different values of < ψ > label
inequivalent representations of A (see also the discussion below). Properties
I-III of Chap. 5 are obviously satisfied.

The localization properties of the model deserve a few comments, since
we have a very simple example of the conceptual problem of identifying an
algebra with localization properties stable under time evolution. As a matter
of fact, the quasi local algebra obtained as the norm closure of the local
algebra AL, generated by the Weyl exponentials U(f), V (g), f, g ∈ D(Rs)
(see Sect. 4.1), is not stable under time evolution. The point is that the
Schroedinger time evolution does not map D(Rs) into D(Rs) and, therefore,
strictly localized operators at t = 0 are no longer so at any subsequent time.
This implies that

αt(U(f)) = U(ft), f̃t(k) ≡ f̃(k) eik
2 t/2m,

is not in the norm closure of AL.97 Thus, the non-relativistic approximation
and the corresponding time evolution require to weaken slightly the condition
of localization by replacing the local algebra AL, e.g. by the essentially local
96 They provide much more detailed information than the mere probability dis-

tribution of the occupation numbers, as it is done in the standard elementary
treatments of the the free Bose gas: see e.g. R.P. Feynman, Introduction to Sta-
tistical Mechanics, Benjamin 1972, Sect. 1.9.

97 D.A. Dubin and G.L. Sewell, Jour. Math. Phys. 11, 2990 (1970); G.L. Sewell,
Comm. Math. Phys. 33, 43 (1973). The point is that

||U(ft) − U(gn)|| = ||ei Im (ft, gn) U(ft − gn) − 1|| = 2,

unless ||ft − gn||L2 = 0, because ψ(h) + ψ(h)∗ is an unbounded operator with
continuous spectrum (linear in h) and ∀A = A∗ �= 0,

||ei A − 1||2 = sup
λ∈σ(A)

|eiλ − 1|2 = 4.

On the other hand, if f, gn ∈ D(Rs), ||ft − gn||L2 cannot vanish, since ft /∈ D.
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algebra Al, generated by the Weyl exponentials of ψ(f), ψ(g)∗, f, g ∈ S(Rs),
which is stable under time evolution. It is easy to see that Al and its norm
closure A satisfy asymptotic abelianess.

Another interesting feature of the model is related to gauge invariance.
The gauge transformations

βλ(ψ(x)) = ei λψ(x), βλ(ψ∗(x)) = e−i λ ψ∗(x), λ ∈ [0, 2π]

define a one-parameter group of *-automorphisms of A, which commutes
with αt. The ground state Ψ0, θ is not gauge invariant, in the sense that its
correlation functions are not invariant under βλ, since e.g.

< βλ(ψ) >θ=< ψ >θ+λ .

In fact, under gauge transformations Ωθ → Ωθ+λ.
A gauge invariant state can be defined by averaging over θ

Ω(A) ≡ (2π)−1
∫ 2π

0
dθ Ωθ(A), ∀A ∈ A. (7.6)

One has

Ω(ψ∗
1 ...ψ

∗
kψk+1...ψk+j) = (2π)−1

∫ 2π

0
dθ (n)(k+j)/2 e−i(k−j)θ,

which vanishes unless k = j; similarly for A = ψ1...ψkψ
∗
k+1...ψ

∗
k+j one has

Ω(A) = 0, if k �= j, since Ωθ(A) = ei θ(k−j) Ω0(A).
As displayed by (7.6), Ω is not a pure state on A and the GNS represen-

tation defined by Ω is not irreducible. This can be seen explicitly by noting
that

ψ(f)∞ = lim
V→∞

V −1
∫
V

dsx (ψ(f))x

commutes with A, by asymptotic abelianess, and exp i(ψ(f))∞ belongs to
the centre Z; on the other hand

Ω((ψ(f))∞) = 0, Ω((ψ(f)∗)∞ (ψ(f))∞) = n,

so that exp i(ψ(f))∞ is not a multiple of the identity in the GNS represen-
tation defined by Ω and this excludes irreducibility.

A simple computation gives

Ωθ((ψ(f))∞) =
√
neiθf̃(0), Ωθ(ei (ψ(f)+ψ(f)∗)∞) = e2iRe (<ψ>θ f̃(0)),

so that for different θ the states Ωθ assign different values to an element of
the centre and therefore the corresponding representations are inequivalent.

The algebra A contains a (pointwise) gauge invariant subalgebra Aobs,
which has the meaning of the algebra of observables. All the states Ωθ and
therefore Ω define equivalent representations of Aobs.
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The ground state correlation function for the free Fermi gas can be com-
puted by putting the system in a box of volume V with periodic boundary
conditions. The ground state ΩV is completely characterized by the two-point
function

ΩV (a∗
k ak′) = δk,k′ θ(k2

F − k2), k3
F ≡ 3π2 n, (7.7)

where θ denotes the Heaviside step function and n the density. Thus, in the
thermodynamical limit

< ψ(f)∗ ψ(g) >ΩV
= V −1

∑
j

f̃(kj) g̃(kj) θ(k2
F − k2

j )

→ (2π)−3
∫
d3k f̃(k) g̃(k) θ(k2

F − k2). (7.8)

7.3 * Appendix: The Infinite Volume Dynamics
for Short Range Spin Interactions

We consider a spin system on a lattice Zd with many-body “potentials”

Φk(x1, ...xk) = v(x1, ...xk)σ(x1)...σ(xk),

where xi denote the lattice points and for simplicity the spin components
are not spelled out. Briefly, if X = {x1, ...xk} denotes a set of lattice points,
we denote by Φ(X) the corresponding interaction energy. For example, in
the case of a spin system interacting only via a two body potential, one has
Φ(X) = 0, unless X = {x1, x2} and Φ(X) = J(x1, x2)σ(x1)σ(x2).

The potentials are assumed to describe translationally invariant interac-
tions , i.e.

αa(Φ(X)) = Φ(X + a).

The interaction is said to be of finite range if, given a lattice point x, the
number of sets X, which contain x and for which Φ(X) �= 0, is finite; the
union of such sets is denoted by ∆ and called the range of Φ; N(∆) denotes
the number of points of ∆.

The finite volume Hamiltonian is therefore of the following form

HV =
∑
X⊂V

Φ(X).

We shall first consider the case of finite range and sketch the proof 98 that,
∀A ∈ AL, α

V
t (A) converges in norm. This implies that the norm limit αt is

norm preserving: ||αt(A)|| = ||A|| and therefore it defines an automorphism
of AL. Thus, αt can be extended to the norm closure A of AL, the extension
98 D.W. Robinson, Comm. Math, Phys. 7 337 (1968); R.F. Streater, Comm. Math,

Phys. 6, 233 (1967).
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is norm preserving and it leaves A stable.99 Hence, the dynamics exists as an
automorphism of A.

In order to prove the norm convergence, ∀A ∈ AL we consider

αVt (A) = ei tHV Ae−itHV = A+ it[HV , A] + ... =
∞∑
n=0

AVn t
n, (7.9)

AVn ≡ (in/n!)
∑

X1,...Xn⊂V
[Φ(Xn), [Φ(Xn−1), ...[Φ(X1), A]...]]. (7.10)

The finite range implies that, for fixed n, the r.h.s. of (7.10) becomes
independent of V , for V large enough, i.e. the series (7.9) is convergent term
by term and we only need an estimate on An = limAVn to get the convergence
of the series. For this purpose, we consider the multiple commutator Bn(A)
appearing on the r.h.s. of (7.10). If A ∈ A(V0), one has that Bn(A) ∈ A(V1),

V1 ≡ Xn−1 ∪Xn−2 ∪ ... ∪ V0, N(V1) = N(V0) + (n− 1)N(∆).

Hence, by locality [Φ(X), Bn] = 0, if X ∩ V1 = ∅ and by using translation
invariance we get

||
∑
Xn⊂V

[Φ(Xn), Bn] || ≤
∑

Xn⊂V,Xn∩V1 �=∅
|| [Φ(Xn), Bn] ||

≤ 2||Bn||
∑

X⊂V,X∩V1 �=∅
||Φ(X)|| = 2||Bn||N(V1)

∑
X�0

||Φ(X)||.

Then, by iteration, we get

||AVn || ≤ n!−1||A|| (2
∑
X�0

||Φ(X)||)n
n−1∏
k=0

(N(V0) + kN(∆))

≤ n!−1(2
∑
X�0

||Φ(X)||)n (N(V0) + nN(∆))n||A||

≤ ||A|| (2
∑
X�0

||Φ(X)||)n enN(∆) eN(V0) ≤ C t−n0 , (7.11)

where we have used that xn/n! ≤ ex and put

C ≡ ||A|| eN(V0), t−1
0 ≡ 2

∑
X�0

||Φ(X)|| eN(∆).

99 In fact, if AL 	 An → A ∈ A, one has

||αV
t (A) − αt(A)|| ≤ ||αV

t (A−An)|| + ||αV
t (An) − αt(An)||

+||αt(An) − αt(A)|| ≤ 2||A−An|| + ||αV
t (An) − αt(An)||,

and the r.h.s. can be made as small as we like. Thus, as a norm limit of elements
αV

t (A) ∈ A, also αt(A) ∈ A.
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The above estimate is enough to get the result. In fact,

||αV1
t (A) − αV2

t (A)|| ≤ ||
N∑
n=0

(AV1
n −AV2

n ) tn||

+
∞∑

n=N+1

||AV1
n tn|| +

∞∑
n=N+1

||AV2
n tn||.

Now, the first term on the r.h.s. of the inequality can be made as small as we
like, since, for fixed n, AVn becomes independent of V , for V large enough, by
the finite range; moreover, by the estimate (7.11), the second and third term
are smaller than C

∑∞
n=N+1 |t/t0|n, which can be made as small as we like,

for t ≤ t1 < t0.
The group law αt′ αt(A) = αt′+t(A), which is easily proved for t, t′, t+t′ ∈

[−t1, t − 1], allows to extend αt for all t. From the estimate (7.11) and the
convergence of the series (7.9), it follows that αt is strongly continuous on
AL and therefore also on A.

We shall now discuss the case of an interaction potential Φ1(X), not
necessarily of finite range, satisfying the absolute summability condition

||Φ1|| ≡
∑
X�0

||Φ1(X)|| <
∑
X�0

||Φ(X)||, (7.12)

where Φ is of finite range, and involving only a finite number N̄ of k-body
interactions

Φ1(X) = 0, if N(X) > N̄. (7.13)

For the multiple commutator Bn(A), A ∈ A(V0) (see (7.10)),

BΦ, n(A) =
∑
X⊂V

[Φ(X), BΦ, n−1(A)], BΦ, 1(A) =
∑
X⊂V

[Φ(X), A], BΦ, 0 = A,

one easily proves the following algebraic identity
∑
X⊂V

[Φ1(X), BΦ1, n−1(A)] −
∑
X⊂V

[Φ(X), BΦ, n−1(A)] =

=
n−1∑
m=0

[UΦ1(V ), ...[UΦ1−Φ(V ), [UΦ(V ), ...A]m] ]n−m−1, (7.14)

where UΦ1(V ) ≡∑X⊂V Φ1(V ),

[UΦ, ...A]m ≡ [UΦ, [UΦ, A]m−1], [UΦ, A]1 = [UΦ, A].

Now, by applying the estimate (7.11) to the identity (7.14) we get

||
∑
X⊂V

{[Φ1(X), BΦ1, n−1(A)] − [Φ(X), BΦ, n−1(A)] } || ≤
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≤ n 2n||Φ1 − Φ|| ||Φ||n−1 ||A||
m∏
m=1

[(m− 1)(N̄ − 1) +N(V0)]

and therefore

||AVn, 1 −AVn || ≤ n 2nn!−1||Φ1 − Φ|| ||Φ||n−1 (N(V0) + n(N̄ − 1))n ||A||

≤ n2n||Φ1 − Φ|| ||Φ||n−1 eN(V0) en (N̄−1) ||A|| =

= ||A|| ||Φ1 − Φ|| ||Φ||−1 (2||Φ|| eN̄−1)n eN(V0) ≤ C t−n0 . (7.15)

This estimate is enough to get the convergence of the series (7.9) for the
interaction Φ1 from that of Φ.

Another way of proving the existence of the infinite volume dynamics is
to show directly that αtV (A) is a Cauchy sequence, i.e. for V2 ⊂ V1,

||αtV1(A) − αt
V2(A)|| = ||

∫ t

0
ds (d/ds)(αV1

s α
V2
t−s(A))||

= ||
∫ t

0
dsαV1

s ([HV1 −HV2 , α
V2
t−s(A)])||

≤
∑

x∈V1\V2

∑
X�x

∫ |t|

0
ds ||[Φ(X), αV2

s (A)]||

converges to zero in the infinite volume limit.
This can be done for exponentially decreasing potentials by estimating

||[αVt (A), B]||, A ∈ A({0}), B ∈ A.100 For example, for two-body potentials
satisfying

||Φ||λ ≡
∑
x∈Zd

||Φ({0, x})|| eλ|x| < ∞,

for some λ > 0, one proves that

||[αVt (A), B]|| ≤ ||A||
∑
x

sup
C∈A({0})

(|| [αx(C), B] ||/||C||)e−|x|λ+2|t| ||Φ||λ

and the essentially finite velocity of propagation of physical disturbances

||[αxαVt (A), B]|| ≤ 2 ||A|| ||B|| e−|t|(λ|x|/|t|−2||Φ||λ). (7.16)

100 O. Bratteli and D.W. Robinson, loc. cit. (1996), Vol. 2, Sect. 6.2.1.
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Most of the wisdom on spontaneous symmetry breaking (SSB), especially for
elementary particle theory, relies on approximations and/or a perturbative
expansion. Since the mechanism of SSB is underlying most of the new de-
velopments in theoretical physics, it is worthwhile to try to understand it
from a general (non-perturbative) point of view. Most of the popular expla-
nations given in the literature are not satisfactory (if not misleading) since
they do not make it clear that the crucial ingredient for the non-symmetrical
behaviour of a system described by a symmetric Hamiltonian is the occur-
rence of infinite degrees of freedom and of inequivalent representations of the
algebra of observables. We shall start by recalling a few basic facts.

8.1 Wigner Symmetries

The clarification of the concept of symmetry in quantum mechanics is essen-
tially due to Wigner.101 Given a quantum mechanical system, whose states
are described by rays Ψ̂ = {eiλΨ , λ ∈ R, Ψ ∈ H} of a Hilbert space H, a
symmetry operation g in the sense of Wigner, briefly a Wigner symmetry, is
a mapping of rays into rays,

g : Ψ̂ →= gΨ̂ , (8.1)

which does not change the transition probabilities, namely the modulus of
the scalar products

|(gΨ̂ , gΦ̂)| = |(Ψ̂ , Φ̂)|.
As shown by Wigner,102 any mapping satisfying the above equation can be
realized either by a unitary or by an antiunitary operator U(g) in H in the
sense that

gΨ̂ = Û(g)Ψ. (8.2)

U(g) is determined up to a phase factor, which is irrelevant and can be
eliminated by a redefinition of U(g), for just one symmetry transformation.

101 E.P. Wigner, Group Theory and its Applications to the Quantum Mechanics of
Atomic Spectra, Academic Press 1959.

102 E.P. Wigner, loc. cit.; V. Bargmann, Jour. Math. Phys. 5, 862 (1964).

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 115–122
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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More arguments are required for a continuous group G of symmetries.
If G is connected, as assumed in the sequel, the antiunitary possibility103 is
excluded, since every element is continuously connected to the identity (and
can be written as the square of an element). In this case, by Wigner’s theorem
one has a unitary ray representation of G, namely

U(g)U(g′) = ω(g, g′)U(gg′), |ω(g, g′)| = 1 (8.3)

and the question is whether one can select representatives U(g), g ∈ G out of
the operator rays Û(g), such that ω(g, g′) = 1. This problem has been solved
by Bargmann.104 We shall briefly sketch the argument.

First, we note that the associativity of the group multiplication, namely
((U(g)U(g′))U(g′′) = U(g)(U(g′)U(g′′)), implies

ω(g, g′)ω(gg′, g′′) = ω(g′, g′′)ω(g, g′g′′) (8.4)

or, equivalently, putting ω(g, g′) = exp iξ(g, g′),

ξ(g, g′) + ξ(gg′, g′′) = ξ(g′, g′′) + ξ(g, g′g′′). (8.5)

The analysis of the above equations is greatly simplified if, as we shall do
in the sequel, we restrict the attention to continuous ray representations,
i.e. such that Û(g) is weakly continuous in g with respect to the ray scalar
product.105 This implies that one can select a strongly continuous set of rep-
resentatives U(g) and in this case the functions ω as well as ξ are continuous
functions of the group elements.106

103 We recall that an antiunitary operator U is antilinear, i.e. ∀α, β ∈ C, U (αΨ1 +
βΨ2) = ᾱU Ψ1 + β̄U Ψ2, and satisfies UU∗ = U∗U = 1, where the adjoint U∗

is defined by (Ψ, U∗Φ) = (UΨ, Φ), ∀Ψ, Φ ∈ H. The invariance of the matrix
elements under a symmetry β, i. e. (Ψβ , AβΨβ) = (Ψ, AΨ), Ψβ ≡ UβΨ , gives the
following transformation in the antiunitary case Aβ = UβA

∗U−1
β , whereas in the

unitary case Aβ = UβAU
−1
β .

104 V. Bargmann, Ann. Math. 59, 1 (1954).
105 This means that

|(U(g)Ψ, U(g0)Ψ)| → |(U(g0)Ψ, U(g0)Ψ)| = |(Ψ, Ψ)|, if g → g0.

106 In fact, given a fixed unit vector Ψ one selects U(g), in a neighborhood of the
identity e, by the equation (Ψ, U(g)Ψ) ≡ |(Ψ, U(g)Ψ)|; then, by the (ray) con-
tinuity condition U(g)Ψ s→ Ψ if g → g0 = e. This property extends to any
Φ, by the continuity condition applied to |(U(g)(Ψ + λΦ), U(g0)(Ψ + λΦ))| →
(Ψ + λΦ, Ψ + λΦ), λ ∈ R, since, for λ sufficiently small (Ψ, Ψ) + Reλ(Ψ, Φ) > 0,
so that also λ2 (Φ, U(g)Φ) > 0 and the convergence holds without the modulus.
The extension to any g0 follows from the unitarity of U(g) . For details, see
Bargmann’s paper quoted above and for a very elegant abstract proof see D.J.
Simms, Lie Groups and Quantum Mechanics, Lect. Notes in Math. 52, Springer
1968; Rep. Math. Phys. 2, 283 (1971).
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Then, if g(λ), g(λ′) are two one-parameter groups in the neighborhood
of the identity e, with g(λ) → e, g(λ′) → e, when λ, λ′ → 0, we can expand
all terms of (8.3) up to second order in the group parameters, e.g.

U(g(λ)) = 1 + iλa ta + (1/2)λa λb tab + ..., (8.6)

U(g(λ) g(λ′)) = 1 + i(λa + λ′a + λb λ′c Cabc) ta + 1
2 (λb + λ′b)(λc + λ′c)tbc...

with a, b, c = 1, ..., N = dim G. Since ω(g,1) = 1 = ω(1, g), the expansion
of ω(g(λ), g(λ′)) is of the form

ω(g(λ), g(λ′)) = 1 + λa λ′b dab,

with dab numerical constants. Then, the comparison of the two sides of (8.3)
gives

[ ta, tb ] = ifcab tc + i Cab1, (8.7)

where
fabc ≡ Cacb − Cabc, Cab ≡ dba − dab.

The Jacobi identity requires

fabcf
e
ad + facdf

e
ab + fadbf

e
ac = 0, (8.8)

fabcCad + facdCab + fadbCac = 0. (8.9)

The f ’s have the meaning of the structure constants of the Lie algebra LG
of G and (8.7) appears as a central extension corresponding to the Lie group
Gω = G× U(1).107

To quickly see when the phases can be eliminated, we note that the set of
the Cab defines a (real valued) antisymmetric bilinear form C(ta, tb) ≡ Cab
satisfying, by (8.9),

C([ta, tb], tc) + C([tb, tc], ta) + C([tc, ta], tb) = 0. (8.10)

If the (simply connected) group G has the property that any bilinear form
with the above properties can be written in terms of a linear form ω, in
the sense that C(ta, tb) = ω([ta, tb]), (technically this means that the second
cohomology group H2(G,R) of LG, with coefficients in R, is trivial), then

107 See Bargmann’s paper and D.J. Simms’ book. In fact, for the pairs (g, λ), g ∈
G,λ ∈ U(1) the composition law

(g, λ) (f, µ) = (gf, ω(g, f)λµ)

satisfies associativity, thanks to (8.4) and can be shown to define a Lie group.
Any continuous homomorphism α : G → Gω of the form α(g) = (g, λ(g)) would
satisfy λ(gh) = ω(g, h)λ(g)λ(h) and allow the elimination of the phases by the
redefinition U(g) = λ(g)U(g).



118 Part II: Symmetry Breaking in Quantum Systems

the phases can be eliminated.108 In fact, this is obtained by the following
redefinition of the generators: Ta = ta + ω(ta).

8.2 Spontaneous Symmetry Breaking

The exploitation of symmetries for the description of quantum systems has
played an important role in obtaining information without having to solve
the full dynamical problem. It also proved useful in the case in which the
symmetry is not exact by offering the possibility of unifying the description
of systems related by an approximate symmetry, in terms of a “small” sym-
metry breaking term in the Hamiltonian in order to account for their “small”
differences. Such a strategy has been successful when applied to quantum
systems with a finite number of degrees of freedom, but it showed practical
and conceptual difficulties when applied to infinitely extended systems.

First, the viability of such a strategy is restricted to the case of “small”
symmetry breaking and therefore does not allow to unify the description of
systems with rather different physical behaviour (e.g. the electromagnetic
and weak interactions of elementary particles, or different thermodynamical
phases in many body theory). Second, renormalization problems require an
independent renormalization of the basic physical parameters, with the result
of vanifying some of the possible predictions of the symmetry breaking (e.g.
the electromagnetic mass differences due to isospin breaking in elementary
particle theory).

From this point of view, the realization of the mechanism of spontaneous
symmetry breaking represented a real breakthrough in the development of the-
oretical physics, because i) one does not have to identify a small asymmetric
term in the Hamiltonian and one may use a fully symmetric Hamiltonian,
ii) the symmetry breaking is accounted for by the instability of the physical
world or phase chosen to describe the states of the system.

This mechanism also shows up in the classical case, where symmetric equa-
tions of motion may nevertheless lead to an asymmetric physical description,
due to the existence of disjoint physical worlds or phases in which the symme-
try is broken (see Part I). As we shall see also in the quantum case different
phases of a system (e.g. gas, liquid and solid) with rather different physical
properties can nevertheless be described by the same algebra of canonical

108 The triviality of the second cohomology group allows the construction of a Lie
algebra homomorphism α′ : LG → LGω of the form α′(A) = (A, ξ(A)) (and
therefore of a homomorphism α : G → Gω as discussed in the previous footnote).
In fact, any linear map β(A) = (A, λβ(A)) ∈ LGω , A ∈ LG, defines a real valued
antisymmetric bilinear form Cβ(A,B)

Cβ(A,B) ≡ [β(A), β(B)] − β([A,B]),

which satisfies (8.10) and is therefore of the form ω([A,B]). Then, α′(A) ≡
β(A) + ω(A) yields the desired Lie algebra homomorphism.
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variables and by the same dynamics, their differences being ascribed to the
fact that they correspond to inequivalent representations.

A crucial role for the implementation of the above mechanism is played by
the concept of algebraic symmetry of an algebra A of observables or of canon-
ical variables, defined as an invertible mapping β of the algebra into itself,
which preserves all the algebraic relations, including the ∗ (*-automorphism
of A). Clearly, if ω is a state on A, also β∗ω defined by

(β∗ω)(A) ≡ ω(β(A)) (8.11)

is a state on A and the corresponding GNS representations are isomorphic
and physically equivalent if β commutes with the dynamics αt. They may
however yield (mathematically) inequivalent representations of A. In this case
the corresponding vector states cannot belong to the same Hilbert space,
i.e. they describe disjoint physical worlds. In a very similar way, one may
introduce algebraic symmetries defined by antiautomorphisms σ of A:

σ(λA+ µB) = λ̄ σ(A) + µ̄ σ(B),

σ(AB) = σ(B)σ(A), σ(A∗) = σ(A)∗, ∀A, B ∈ A.
They correspond to the Wigner symmetries described by antiunitary opera-
tors. For simplicity, we shall not consider this case in the sequel.

Given a representation πω of A, the algebraic symmetry β gives rise to a
Wigner symmetry in Hω if there exists a unitary operator Uβ such that

Uβ πω(A)U−1
β = πω(β(A)) = πβ∗ω(A). (8.12)

The above equation is equivalent to the property that πβ∗ω is unitarily equiv-
alent to πω. In this case, the physical description of the system in the phase
(πω,Hω) is β-symmmetric (briefly the symmetry β is unbroken or exact). On
the other hand if πω and πβ∗ω are not unitarily equivalent, there is no uni-
tary operator Uβ which implements β in Hω and the corresponding physical
description is not β-symmetric. In this case the symmetry is said to be spon-
taneously broken. The name should stress the fact that one has a symmetry
at the algebraic level and that the lack of symmetry of the matrix elements
between states of a given representation π is due to the impossibility of de-
scribing the given algebraic symmetry by a unitary operator which maps the
states of Hπ into themselves.

It should be clear from the above discussion that the concept of algebraic
symmetry disentangles the concept of symmetry from a concrete representa-
tion and it is particularly useful for the description of infinite systems, for
which there are generically several inequivalent representations of the algebra
of observables or of canonical variables. As we shall see below, it also allows
the mechanism by which a symmetry of the dynamics may fail to be a sym-
metry of the physical world associated to a given description of the system.
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Perhaps, one of the reasons why the mechanism of spontaneous symmetry
breaking has been realized so late after the foundations of quantum mechanics
is that, as in the classical case, its realization crucially involves infinite degrees
of freedom.

For this purpose, we consider an algebraic symmetry γ of the Weyl al-
gebra with the property that it can be extended to the Heisenberg algebra,
namely to the canonical variables q, p; from a technical point of view such a
property can be formalized by the condition that γ preserves the regularity
of the Weyl operators, i.e. if π(U(α)), π(V (β)) are weakly continuous in α, β,
so are π(γ(U(α))), π(γ(V (β))). Indeed, by Stone’s theorem such a property
allows to define γ(q), γ(p) as the generators of the one-parameter groups
π(γ(U(α))), π(γ(V (β))). The algebraic symmetries of AW which have this
property shall be called regular (or regular *-automorphisms of AW ).

Proposition 8.1. If π is a regular irreducible representation of the Weyl al-
gebra AW (for finite degrees of freedom), then any regular algebraic symmetry
γ of AW is implemented by a unitary operator in the representation space Hπ

(no spontaneous symmetry breaking).

Proof. In fact, if π and πγ are the GNS representations defined by the states
ω and γ∗ω respectively, by (8.11) one has

(Ψγ∗ω, πγ(A)Ψγ∗ω) = (γ∗ω)(A) = ω(γ(A)) = (Ψω, π(γ(A))Ψω).

Now, if ω is pure so must be γ∗ω since γ∗ is invertible, and therefore if π is
irreducible so is also πγ . Finally, if π is regular, so is πγ by the regularity of
γ and therefore the two representations are unitarily equivalent by Von Neu-
mann’s uniqueness theorem. This means that (8.12) holds and γ is unitarily
implemented.

8.3 Symmetry Breaking Order Parameter

The above characterization of spontaneous symmetry breaking as non-ex-
istence of a unitary operator implementing a given algebraic symmetry, al-
though simple and general is not easy to check. It is therefore convenient
to have a practically simpler criterium. For simplicity, we restrict our atten-
tion to the case of algebraic symmetries which commute with space and time
translations, briefly called internal symmetries.

Proposition 8.2. Given a representation π of the algebra A of observables or
of canonical variables, satisfying conditions I-III of Chap. 5, and an internal
symmetry β, a necessary and sufficient condition for β being unbroken in π is
that all the ground state correlation functions are invariant under β, namely

ω(β(A)) ≡< β(A) >0=< A >0= ω(A), ∀A ∈ A, (8.13)

where ω denotes the ground state.

Proof. In fact, if β is unitarily implementable the state β∗ ω (see (8.11)) is
described by a vector of Hπ, and it is translationally invariant since β com-
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mutes with the space translations. By the uniqueness of the translationally
invariant state, it follows that β∗ ω must coincide with ω and (8.13) follows.
The converse has essentially been proved in the remark after the GNS con-
struction at the end of Chap. 1.

A ground state expectation value < A >0, such that

< β(A) >0 �=< A >0,

will be called a symmetry breaking order parameter.
The above Proposition makes clear the mechanism by which a symme-

try of the dynamics may nevertheless give rise to an asymmetrical physical
description of the system: the point is that the states of the system are de-
scribed by essentially local modifications of the ground state and states of the
form AΨ0, β(A)Ψ0 describing modifications of Ψ0 related by the algebraic
symmetry β, cannot be unitarily related if Ψ0 is not invariant. Even if the two
representations πω and πβ∗ω are physically equivalent (in the sense that they
are related by a physically indistinguishable relabeling of the observables or of
the coordinates (A → β(A))), β is not a Wigner symmetry in either of them.

It is worthwhile to stress that two ingredients play a crucial role: due
to the infinite number of degrees of freedom, two ground states define two
disjoint worlds or phases of the system and therefore, in contrast with the
case of ordinary quantum mechanics, the non-invariance of the ground state
implies the asymmetry of the corresponding physical world defined by it.

The criterium of spontaneous symmetry breaking of (8.13) crucially relies
on the uniqueness of the translationally invariant state and therefore it applies
to pure phases. Symmetric correlation functions defined by a mixed state do
not imply that the symmetry is unbroken in the pure phases in which the
theory (defined by such correlation functions) decomposes. The check of the
symmetry of the correlation functions should then be accompanied by the
check of the cluster property.

The criterium of Proposition 8.2 also holds if β is only assumed to com-
mute with the time translations, π is irreducible and the uniqueness of the
translationally invariant state is replaced by the uniqueness of the ground
state, i.e. if π satisfies conditions I, II, III i) of Chap. 5 (but not necessarily
III ii).

In fact, [β, αt] = 0 implies that V (β, t) ≡ UβU(t)U−1
β U(−t) commutes

with A and therefore, by the irreducibility of π, is a multiple of the identity,
say exp i h(β, t)1 with h a real function. The strong continuity of U(t) and
the group law imply that h is a continuous function of t and actually a linear
function h(β, t) = t h(β), i.e.

UβU(t)U∗
β = eit h(β) U(t), U∗

βU(t)Uβ = e−it h(β) U(t).

The above equations are incompatible with the energy spectral condition
unless h = 0, since

U(t)Unβ Ψ0 = e−int h(β)Unβ Ψ0, U(t)U∗n
β Ψ0 = eint h(β)U∗n

β Ψ0.
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Thus, Uβ Ψ0 is invariant under U(t) and by the uniqueness of the ground
state, it must be of the form exp (iα)Ψ0, α ∈ R. Equation (8.13) then follows
easily.



9 Examples

To illustrate the above general ideas we discuss simple concrete models ex-
hibiting spontaneous symmetry breaking.

1. Heisenberg Ferromagnet

The Heisenberg model for spin 1/2 Ferromagnets is described by the following
finite lattice Hamiltonian

HV = −
∑
i,j∈V

Jij σi · σj − h ·
∑
j∈V

σj , (9.1)

where V denotes the finite three dimensional lattice, h is an external uniform
magnetic field, i, j label the lattice points and Jij is the positive coupling con-
stant or “potential”, invariant under lattice translations and of short range,
e. g. a nearest neighbor coupling (see Sect. 7.1).

As discussed in Sect. 7.1, the algebraic dynamics αt is defined as the norm
limit of the finite volume dynamics αVt generated by HV . The spin rotations
define a three parameter group of *-automorphisms or algebraic symmetries
of the quasi local spin algebra A, which commute with the time translations
αt in the limit h = |h| → 0.

For finite V , the ground state Ψ0
V, h (defined on AV and by Hahn-Banach

extension on A) is characterized by all the spins pointing in the direction of
n ≡ h/|h|, i.e.

σj · nΨ0
V, h = Ψ0

V, h.

The correlation functions of Ψ0
V, h converge as V → ∞ and define a state

Ωh0 on A which is invariant under space translations and under αt. In fact,
thanks to the uniform convergence of αVt , one has

Ωh0 (αt(A)) ≡ lim
V ′→∞

lim
V→∞

ΩV, h0 (αV
′

t (A))

= lim
V→∞

ΩV, h0 (αVt (A)) = lim
V→∞

ΩV, h0 (A) = Ωh0 (A).

Moreover, by keeping n fixed and letting h → 0, the correlation functions of
Ωh0 converge and define a state Ωn

0 on A which is not invariant under spin

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 123–125
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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rotations. This gives rise to a symmetry breaking order parameter (magneti-
zation)

Ωn
0 (n · σj) = lim

h→0
lim
V→∞

(Ψ0
V, h, n · σjΨ0

V, h) = 1. (9.2)

Each Ωn
0 defines a (physically relevant) representation πn of A with cyclic

vector Ψ0
n. Different directions n give rise to inequivalent representations of

A, each labeled by a different symmetry breaking order parameter. In fact,
by asymptotic abelianess, the ergodic limits

lim
V→∞

V −1
∑
i∈V

n · σi ≡ (n · σ)∞

exist in any πn and belong to the center (by the proof of Prop. 6.3); since
they take different values in representations labeled by different n, such rep-
resentations cannot be unitarily related. Such representations are physically
equivalent in the sense that one goes from one to the other by a different
choice of the coordinate axes (which leaves the Hamiltonian invariant); the
physically relevant point is the existence of a symmetry breaking order pa-
rameter in each πn.

By taking rotationally invariant averages of the states Ωn
0 , similarly

to (7.6) for the free Bose gas, one may obtain a state Ωinv0 whose corre-
lation functions are rotationally invariant and do not provide a symmetry
breaking order parameter. However, Ωinv0 is not a pure state on A and sym-
metry breaking order parameters emerge if one decomposes Ωinv0 into the
pure states of which is a mixture.

2. Bose-Einstein Condensation

As discussed in Sect. 7.2, the gauge transformations define a one-parameter
group of algebraic symmetries of the field algebra A, which describes a system
of free bosons.

In each representation πθ defined by Ωθ, the gauge symmetry is sponta-
neously broken with order parameter < ψ >θ. The occurrence of symmetry
breaking also for a free system is due to the fact that for non-zero density
the total number operator does not exists, the generalized version of Von
Neumann’s theorem does not apply and inequivalent representations of the
Weyl field algebra are allowed.

On the other hand, all the correlation functions of the gauge invariant
state Ω are by construction invariant under gauge transformations and one
may wonder about their breaking. The point is that Ω is a pure state on the
observable algebra but not on the field algebra A, as displayed by the viola-
tion of the cluster property by the correlation functions of A. The symmetry
breaking emerges when one makes a decomposition into the pure states of
which Ω is a mixture.

The model is an interesting example of the mechanism of spontaneous
breaking of a gauge symmetry, which by definition reduces to the identity on
the observables.
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3. Massless Field in d ≥ 3

For the free massless field in space time dimensions d ≥ 3 (see Chap. 2;
for d = 2 the model is infrared singular109), the “gauge” transformations
βλ(ϕ(x)) = ϕ(x) + λ define internal algebraic symmetries, which are spon-
taneously broken in any physically relevant representation, with symmetry
breaking order parameter < ϕ >0 �= < βλ(ϕ) >0.

109 See e.g. F. Strocchi, Selected Topics on the General Properties of Quantum Field
Theory, World Scientific 1993, Sect. 7.2.



10 Constructive Symmetry Breaking

Apart from simple models, like those discussed in the previous section, the
existence of a symmetry breaking order parameter is a non-trivial problem
which in principle requires the control on the correlation functions. In this
section we briefly discuss constructive criteria for symmetry breaking.

A. Goldstone (Perturbative) Criterium

In a pioneering paper on symmetry breaking Goldstone discussed a quantum
(scalar) field theory model exhibiting a symmetry breaking order parame-
ter.110 Since the standard perturbative expansion based on the standard Fock
representation predicts the vanishing of the field expectation value, Gold-
stone suggested a strategy which combines a perturbative expansion and a
semiclassical approximation (Goldstone criterium). Since this has become the
standard approach to symmetry breaking within the perturbative approach,
it is worthwhile to discuss briefly the Goldstone criterium.

The Goldstone model is described by the following Lagrangean

L = 1
2 ∂µϕ∂

µϕ− U(ϕ), U(ϕ) = λ(ϕ2 − a2)2, (10.1)

where ϕ is a real scalar field transforming as an n dimensional irreducible
representation of the internal symmetry group O(n). The Goldstone strategy
is based on the following steps:

i) (semiclassical approximation) one considers the classical absolute minima
ϕmin of the (classical) potential U (which form an orbit under O(n))

ii) (perturbative expansion about the mean field semiclassical approximation)
one picks up one absolute minimum ϕmin and builds up a perturbative
quantum expansion around such a classical value of the field: ϕ = ϕmin+χ.

The expansion is conveniently organized as a quantum (or loop) expansion
in �.111 It is an important result that such an expansion makes sense, namely

110 J. Goldstone, Nuovo Cim. 10, 154 (1961). For a general critical discussion and
for an outline of the constructive approach to symmetry breaking in quantum
field theory see A.S. Wightman, Constructive Field Theory, in Fundamental In-
teractions in Physics and Astrophysics, (Coral Gables 1972), G. Iverson et al.
eds., Plenum 1973.

111 S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 127–130
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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that a renormalized perturbation expansion exists.112 It then follows that in
such a perturbative expansion

< ϕ >0= ϕmin + small quantum corrections

and therefore, if ϕmin is not symmetric, so is < ϕ >0. In this way one con-
structs a (perturbative) theory with a symmetry breaking order parameter.
By this logic, each absolute minimum identifies a ground state and a non-
symmetric theory.

B. Ruelle Non-perturbative Strategy

The Goldstone strategy has proved successful for application to many body
theory (e.g. Ginzburg-Landau model of superconductivity) and for elemen-
tary particle theory (see the perturbative treatment of the standard model
of electromagnetic and weak interactions), but it leaves some basic questions
open. In fact, it is known that mean field approximations are often not reliable
and the results on the triviality of the ϕ4 theory in four space time dimensions
seem to indicate that the perturbative expansion, which might be, at best,
an asymptotic expansion, may have little to do with the non-perturbative
solution.

A strategy for a non-perturbative approach to symmetry breaking in
quantum field theory and in many body theory is provided by the imaginary
time (or euclidean) formulation and the functional integral representation of
the euclidean correlation functions.113

For the Goldstone model this is obtained by introducing a space cutoff
V (e.g. by working in a finite volume V ) and an ultraviolet cutoff K (e.g.
by replacing the continuous euclidean space by a regular lattice). Then, the
imaginary time correlation functions are given by a functional integral

< ϕ(x1)...ϕ(xn) >V,K = Z−1
V,K

∫
Dϕe− ∫

V
Lren(ϕK) dxϕK(x1)...ϕK(xn),

(10.2)
where ϕK denotes the (euclidean) field on the (finite) lattice, with lattice
spacing a = K−1, and Lren the renormalized euclidean Lagrangean, (includ-
ing the infrared and ultraviolet counterterms needed to ensure the conver-
gence of the correlation functions, when the cutoffs are removed, according

112 B.W. Lee, Nucl. Phys. B9, 649 (1969); K. Symanzik, Renormalization of Theo-
ries with Broken Symmetry, in Cargèse Lectures in Physics 1970, D. Bessis ed.,
Gordon and Breach, New York 1972; C. Becchi, A. Rouet and R. Stora, Renor-
malizable Theories with Symmetry Breaking, in Field Theory, Quantization and
Statistical Physics E. Tirapegui ed. D. Reidel 1981. For textbook accounts see
e.g. J. Collins, Renormalization, Cambridge Univ. Press 1984, Ch. 9; L.S. Brown,
Quantum Field Theory, Cambridge Univ. Press 1994.

113 See J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of
View, 2nd ed., Springer 1987. For a handy account see [SNS 96].
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to the non-perturbative renormalization mentioned in Chap. 3) and

ZV,K =
∫

Dϕe− ∫
V

Lren(ϕK) dx. (10.3)

In this way, the problem takes the form of a problem of statistical mechanics,
with Z playing the role of the partition function, and one may use the well
established strategy for the existence of a symmetry breaking order parameter
in statistical systems.

This strategy has been discussed at length with mathematical rigor in
Ruelle’s book114 and we shall briefly call it the Ruelle strategy. The general
idea is to compute the above correlation functions with specified boundary
conditions for ϕK , e.g. ϕK = ϕ on the boundary ∂ V , and discuss the depen-
dence of the thermodynamical limit (V → ∞) on the boundary conditions.
It is a deep result that, under general conditions, any state can be obtained
in this way by a suitable choice of the boundary conditions, and, therefore, if
the thermodynamical limit of the correlation functions is independent of the
boundary conditions (as it happens above the critical temperature), there is
only one phase and no spontaneous symmetry breaking.

On the other hand, the dependence on the boundary conditions indicates
that there is more than one phase and if different boundary conditions, related
by a symmetry operation, give rise to different correlation functions (in the
thermodynamical limit and whenK → ∞ ), then there is symmetry breaking.

In fact, if g is an internal symmetry (therefore leaving the Lagrangean
invariant) and one chooses as boundary condition ϕK = ϕ on ∂ V , one has,
putting ϕg ≡ g ϕ,

< ϕg(x1)...ϕg(xn) >V,K, ϕ =

Z−1
V,K, ϕ

∫
Dϕe−(AV (ϕ)+A∂V (ϕ))ϕgK(x1)...ϕ

g
K(xn), (10.4)

where AV denotes the euclidean (renormalized) action and A∂V the boundary
term which enforces the chosen boundary condition.

Now, since the Lagrangean, and therefore the action, is invariant under the
symmetry g, by a change of variables in the functional integral, say ϕ′

K ≡ ϕgK ,
the right hand side of the above equation becomes

Z−1
V,K, ϕ

∫
Dϕ′ e−(AV (ϕ′)+A∂V (g−1ϕ′))ϕ′

K(x1)...ϕ′
K(xn) =

< ϕ(x1)...ϕ(xn) >V,K, g−1ϕ . (10.5)

Thus, the non-invariance of the above correlation functions in the thermody-
namical limit is equivalent to the dependence on the (non-symmetric) bound-
ary conditions.

114 D. Ruelle, Statistical Mechanics, Benjamin 1969. For the applications see also
G.L. Sewell, Quantum Theory of Collective Phenomena, Oxford Univ. Press 1986,
esp. Part III, and B. Simon, The Statistical Mechanics of Lattice Gases, Vol.I,
Princeton Univ. Press 1993.
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Clearly, if the chosen boundary conditions are symmetric (e.g. periodic
boundary conditions) the corresponding correlation functions are invariant,
but this cannot be taken as a criterium for absence of spontaneous symmetry
breaking, because the so constructed correlation functions may correspond
to a mixed phase or to a representation with more than one translationally
invariant state as displayed by the failure of the cluster property.

C. Bogoliubov Strategy

Another constructive way of obtaining symmetry breaking order parameters
was discussed by Bogoliubov115 and exploited in particular in his treatment
of superconductivity. The idea is to introduce a symmetry breaking inter-
action with an external field, which is sent to zero at the very end. Such a
prescription looks more physical, since it reflects the operational way of pro-
ducing e.g. a ferromagnet, but does not seem to be under the same rigorous
mathematical control as is the Ruelle strategy.

In the Goldstone model discussed above, the idea of the Bogoliubov strat-
egy can be implemented by introducing in the (infrared and ultraviolet) reg-
ularized theory an n-component external field h(x) which plays the role of
the external magnetic field for ferromagnets, linearly coupled to ϕ(x) (more
generally one may modify the coupling constant). Clearly, the volume inter-
action with the external field wins over the surface terms due to the boundary
conditions and the latter ones become irrelevant.

Then, one computes the correlation functions in the thermodynamical
limit and finally one lets h → 0. Proceeding as in the above discussion of
the Ruelle strategy, one easily gets the following relation between the infinite
volume correlation functions:

< ϕg(x1)...ϕg(xm) >K,n=< ϕ(x1)...ϕ(xm) >K, g−1n, (10.6)

where n denotes the direction along which h is sent to zero.
The criterium of symmetry breaking associated with the Bogoliubov strat-

egy is then the following: if in the thermodynamical limit the so obtained
correlation functions do not depend on the direction along which h → 0,
one has only one phase and no symmetry breaking. On the other hand, if
different directions of h give rise to different limits, one obtains non-invariant
correlation functions and spontaneous symmetry breaking. Indeed, the Bo-
goliubov procedure closely corresponds to the way by which one operationally
produces a non-trivial magnetization in a given direction.

The non-uniqueness of the thermodynamical limit, in the strategies dis-
cussed above, is an indication of a sort of dynamical instability, since an
infinitesimally small interaction (a surface or boundary term or a vanish-
ingly small volume interaction with an external field) is capable of drastically
changing the state in the thermodynamical limit and the physical behaviour
of the system.

115 N.N. Bogoliubov, Lectures on Quantum Statistics, Vol.2, Gordon and Breach,
1970, Part 1.
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Most of the theoretical wisdom on the phase transition of the ferromagnetic
type and the related symmetry breaking is based on the two-dimensional Ising
model, which also played the role of a laboratory for ideas and strategies and
it is now regarded as a corner stone in the foundations of statistical mechan-
ics. Anyone interested in critical phenomena and in the functional integral
approach to quantum field theory should have a look to the model. Even if
a discussion of the two-dimensional Ising model would be very appropriate
for our purposes, we refer the reader to the very good accounts which can
be found in literature116. We restrict our discussion to the one-dimensional
version of the model, which is almost trivial, but nevertheless provides an in-
teresting simple example for testing the constructive strategies of symmetry
breaking discussed above.

The Ising model was invented to mimic the phenomenon of ferromag-
netism and it is a simplified version of the Heisenberg model. The algebra
A which describes the degrees of freedom of the system is the spin algebra
generated by polynomials of the spins in various sites (see Sect. 7.1) and the
finite volume Hamiltonian is

HV = −J
∑
i∈V

σi σi+1 − h
∑
i∈V

σi, (11.1)

where, for the spin 1/2 case, si ≡ σi/2 denotes the z− component of the
spin at the i-th lattice site. The inversion of the spins γ(σi) = −σi is an
internal symmetry and we shall see that it is spontaneously broken at zero
temperature.117

116 For the history of the model see S.G. Brush, Rev. Mod. Phys. 39, 883 (1967).
The model is now part of the basic knowledge in statistical mechanics and the
theory of phase transitions; for textbook accounts see e.g. K. Huang, Statistical
Mechanics, Wiley 1987, Ch. 14, 15; G. Gallavotti, Statistical Mechanics: A Short
Treatise, Springer 1999, Sect. 6; B. Simon, The Statistical Mechanics of Lattice
Gases, Vol. I, Princeton Univ. Press 1993, Sect. II.6. An extensive treatment,
which also emphasizes the links with quantum field theory and general theoretical
physics problems is in B.M. McCoy and T.T. Wu, The Two Dimensional Ising
Model, Harvard Univ. Press 1973.

117 For the basic elements of statistical mechanics see e.g. K. Huang, Statistical
Mechanics, Wiley 1987; a brief account is given in the following section.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 131–138
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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The model can also be used to describe a lattice gas, with the choice
ni ≡ (1 + σi)/2 = 1 if the i-th site is occupied by a “molecule” and ni = 0
otherwise. The Hamiltonian models an interaction between the “molecules”
by a square well potential of the form U(r) = ∞ for r < a ≡ the lattice
spacing, U(r) = −U for a < r < 2a and U(r) = 0 for r > 2a. In this
interpretation J is related to U and h = 2µ + d, where µ is the chemical
potential and d is the number of nearest neighbors per site; the fluid phase
would correspond to < si >= 1 and the gas to < si >= 0.

The calculation of the spin correlation functions at non-zero temperature
T = 1/β, in the thermodynamical limit, is a very simple but instructive ex-
ample of how the general wisdom of statistical mechanics works in concrete
examples and as such can be regarded as a prototype of the functional inte-
gral approach to quantum field theory models. We shall discuss the model in
the case of a one-dimensional lattice, with the purpose of illustrating the var-
ious strategies of constructive symmetry breaking, discussed in the previous
section.

1. Free Boundary Conditions

We consider the case h = 0 with free boundary conditions (i.e. no boundary
condition) in finite volume, i.e. for N sites.

The partition function is

ZN =
∑
σ1=±1

...
∑

σN=±1

eβ J
∑N−1

i=1 σiσi+1 (11.2)

and can be easily computed by noting that, since σi takes only the values ±1
and cosh is an even function,

∑
σN=±1

eβJ σN−1σN = 2 cosh(βJσN−1) = 2 coshβJ.

Thus, a recursive application of the argument gives

ZN = 2N (coshβJ)N−1.

All the correlation functions are γ symmetric (as in (10.5)). In fact, by a
change of variables (σ → σ′ = −σ) one has, ∀β,

< σk1 ...σkn
>N= Z−1

N

∑
σ

σk1 ...σkn
eβJ

∑N−1
i=1 σiσi+1 =

Z−1
N

∑
(−1)n σ′

k1 ...σ
′
kn
eβJ

∑N−1
i=1 σ′

iσ
′
i+1 = (−1)n < σk1 ...σkn >N .

Thus all the correlation functions of a odd number of spins vanish, i.e. all the
correlation functions are symmetric. To say something on symmetry breaking,
one has to control what happens in the pure phases, i.e. one must check the
cluster property in the thermodynamical limit.
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For this purpose, we compute the two-point function which can be easily
obtained by the following trick: we modify the model by introducing site
dependent couplings Ji and introduce the corresponding partition function

ZN (Ji) = 2N
N−1∏
i=1

cosh(Jiβ).

Then one has

ZN < σk σk+r >N= (
∑
σ

σkσk+r e
β

∑
i Jiσi σi+1)Ji=J =

β−r (
∂

∂ Jk

∂

∂ Jk+1
...

∂

∂Jk+r−1
ZN (Ji))Ji=J = ZN (tanhβJ)r. (11.3)

This formula displays the independence of the number of lattice sites so that
it coincides with its thermodynamical limit and it shows the invariance under
lattice translations. Quite generally, for ordered sites one gets

< σkσk+r1 σjσj+r2 ...σl σl+rn
>N= tanh(βJ)

∑n
i=1 ri .

Then, one has ∀β < ∞
lim
r→∞ < σk σk+r >= 0,

whereas in the limit β → ∞
< σkσk+r >

T=0= 1.

Thus the cluster property fails at zero temperature, which means that the
correlation functions computed with free boundary conditions define a mixed
state (at T = 0). This teaches us the general lesson that in the presence of
symmetry breaking the thermodynamical limit taken without any boundary
condition leads us to a violation of the cluster property.

By the same argument as above, one can show that all the correlation
functions at T �= 0 satisfy the cluster property and therefore their symmetry
proves that there is no spontaneous symmetry breaking at non-zero temper-
ature.

2. Periodic and Cyclic Boundary Conditions

A commonly used choice is that of periodic boundary conditions, mainly
because they have the virtue of preserving translational invariance in finite
volume. But, being invariant under internal symmetries, they also lead to a
mixed phase, when there is symmetry breaking.

The computation of the correlation functions with periodic boundary con-
ditions is instructive also because it allows the use of the transfer matrix,
which has become a powerful tool in statistical mechanics and in lattice
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quantum field theory.118 To this purpose the exponential

T (i, i+ 1) ≡ eβJ σiσi+1+β h(σi+σi+1)/2 = T (i+ 1, i) (11.4)

can be viewed as the matrix element < σi|T |σi+1 > of an operator T , called
the transfer matrix, between vectors |σi > labeled (only) by the value (±1)
taken by the spin σi, e.g. |σi >= |+ >= |σi+1 >, if σi = 1 = σi+1. Thus T is
effectively acting on a two dimensional space and is given by

T =
(
T++ T+−
T−+ T−−

)
=
(
eβ J+β h e−β J

e−β J eβ J−β h

)
. (11.5)

Its eigenvalues are

λ±(h) = eβ J cosh β h± [e2βJ sinh2(β h) + e−2 β J ]1/2 , (11.6)

Then, the partition function becomes

ZN =
∑
σ1, σN

< σ1|TN−1|σN > eβ h(σ1+σN )/2. (11.7)

ZN is easily computed for periodic boundary conditions, σ1 = σN , if h = 0,
since it is given by the trace of TN−1

ZN = λN−1
+ + λN−1

− , λ+ = 2 coshβ J, λ− = 2 sinhβ J. (11.8)

The correlation functions can be computed with the trick of introducing site
dependent couplings, as before, and by taking derivatives of

ZN (Ji) =
N−1∏
i=1

λi+ +
N−1∏
i=1

λi−,

since the T (Ji) are all simultaneously diagonalizable.
For β < ∞, the thermodynamical limit is dominated by the highest eigen-

value λ+ > λ−, for N large

ZN = λN−1
+ (1 + (λ−/λ+)N−1) ∼ λN−1

+ .

In this limit one gets the same results as for the case of free boundary con-
ditions, as expected.

The partition function can be easily computed also if one imposes cyclic
boundary conditions, by which the open line of the lattice is turned into a

118 See T.D. Schulz, D.C. Mattis and E.H. Lieb, Rev. Mod. Phys. 36, 856 (1964) and
references therein; E. Lieb, in Boulder Lectures in Theoretical Physics, Vol.XI D,
K.T. Mahantappa and W.E. Brittin eds., Gordon and Breach 1969, p.329; J.B.
Kogut, Rev. Mod. Phys. 51, 659 (1979).
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circle with the identification σN+1 ≡ σ1. Then, the Hamiltonian reads

H = −J
N∑
i=1

σi σi+1 − h

N∑
i=1

σi (11.9)

and one has

ZN = Tr (T (1, 2) ...T (N,N + 1)) =
∑
σ1

< σ1|TN |σ1 >= λ+(h)N + λ−(h)N .

Also in this case, for h = 0, one gets symmetric correlation functions and a
violation of the cluster property at T = 0.

3. Ruelle Strategy. Symmetry Breaking Boundary Conditions

According to the general discussion of the previous section, the pure phases
can be obtained by an appropriate choice of the boundary conditions, in this
case by symmetry breaking boundary conditions.

In fact, for boundary conditions σ1 = σN = σB and for h = 0 one has

ZN =< σB |TN−1 |σB > .

We start with the case β < ∞ (non-zero temperature). In this case the
transfer matrix T has strictly positive entries and by the Perron-Frobenius
theorem, the largest eigenvalue λ+ is non-degenerate.119 Hence, if |λ+ >
denotes the eigenstate with the highest eigenvalue and P the corresponding
projection, one has for large N , if < σB |λ+ >�= 0,

ZN ∼ λN−1
+ < σB |P |σB > .

To compute the (average) magnetization < σ >, we consider a spin chain of
2N + 1 sites, centered at the origin; then, for large N ,

< σ0 >2N+1= Z−1
2N+1

∑
σ0=±

< σB |TN |σ0 > σ0 < σ0|TN |σB >∼

∼< σB |P |σB >−1< σB |P τ3 P |σB >= 0,

where we have used that

lim
N→∞

TN/λN+ → P,

119 For the proof of this result, and its relevance in the functional integral approach
to quantum theories, see J. Glimm and A. Jaffe, Quantum Physics. A Functional
Integral Point of View, 2nd ed. Springer 1987, p.51.
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and that in terms of the spin Pauli matrices τi one has

P = (1 + τ1)/2,
∑
σ0

|σ0 > σ0 < σ0| = τ3, P τ3 P = 0.

On the other hand, for β → ∞, T is no longer strictly positive, actually

T = eβ J 1, λ+ = λ− ≡ λ, ZN = λN−1

and
< σ0 >2N+1=< σB | τ3 |σB >= ±1, if σB = ±1.

Thus, at zero temperature the magnetization equals the spin value at the
boundary. By the same technique, one may compute, e.g. the two-point func-
tion and check that the cluster property is satisfied. In conclusion, with Ru-
elle’s strategy one gets pure phases and symmetry breaking at zero temper-
ature.

4. Bogoliubov Strategy

It is not difficult to check Bogoliubov strategy in this model, by working
with a non-zero magnetic field. In this case, the thermodynamical limit is
independent of the boundary conditions and the computation is particularly
simple if one uses cyclic boundary conditions.

The magnetization is obtained by taking the derivative of ZN with respect
to β h and one gets in the thermodynamical limit

< σk >=
eβ J sinh(β h)

[e2β J sinh2(β h) + e−2β J ]1/2
. (11.10)

Now, for any non-zero temperature (i.e. β < ∞), the limit h → 0 vanishes
independently of the direction of h.

By the same trick, one may prove that all correlation functions have a limit
independent of the direction along which h → 0 and therefore by Bogoliubov
criterium, there is only one phase and no symmetry breaking.

On the other hand, for T = 0 (i.e. β → ∞), one has

< σk >
T=0
h = h/ |h|. (11.11)

Thus, the limit h → 0± depends on the direction of h and there are two
possible values of the magnetization, corresponding to two different phases.
In each phase there is symmetry breaking.

5. Mean Field Approximation

Finally, it is worthwhile to check how the mean field approximation, which
is related to the Goldstone criterium, compares with the exact solution.

The approximation is defined by expanding the spin configurations on
the lattice around a mean magnetization < σ >, to be determined at the end
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self-consistently120, and by keeping only the lowest order terms. This leads
to the following finite volume Hamiltonian

Hmean
V = −2 J

∑
i∈V

σi < σ > −h
∑
i∈V

σi = −(2 J < σ > +h)
∑
i∈V

σi, (11.12)

where the factor 2 accounts for the number of nearest neighbors for each site.
The corresponding partition function is the same as that of a non-interact-

ing chain of spins in the presence of an (effective) external field heff =
h+ 2J < σ > and it is easily computed:

ZN = 2N (cosh β heff )N .

Thus the one-point function in the limit h → 0 is given by

< σk >= Z−1
N N−1∂ZN/∂(β h)|h=0 = tanh(2β J < σ >).

This formula has a trivial solution for the magnetization, < σ >= 0, but
also a non-trivial solution whenever T < Tc ≡ 2 J . Thus, the mean field
approximation predicts spontaneous symmetry breaking also for non-zero
temperature, in disagreement with the exact solution. The point is that,
for T �= 0, the fluctuations induced by the neglected terms O(s2), in the
expansion σ =< σ > +s, win over the lowest order terms and wash out the
order parameter.

It is worthwhile to mention that, quite generally, the mean field approxi-
mation has the following structural features:

i) it replaces the original symmetric Hamiltonian (with zero external field)
by a non-symmetric one and actually leads to a description of the system
based on a dynamics which depends on the order parameter; in the exact
treatment instead, as stressed before, the dynamical law is the same in
all phases and is therefore independent of the order parameter (only the
correlation function are). In a certain sense, the mean field mixes algebraic
properties with properties related to the ground state.

ii) it replaces a short range dynamics, e.g. corresponding to a nearest neigh-
bor coupling, by an infinite range dynamics, since the average spin < σ >
coincides with the expectation of

σ∞ ≡ lim
V→∞

V −1
∑
i∈V

σi

120 This approximation is at the basis of the Curie-Weiss theory of magnetic phase
transitions, also called molecular field approximation; see e.g. H.E. Stanley, Intro-
duction to Phase Transitions and Critical Phenomena, Oxford Univ. Press 1974,
Ch. 6; C.J. Thompson, Mathematical Statistical Mechanics, Princeton Univ.
Press 1972, Sect. 4.5.
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(see Chap. 6), which involves all the spins. In a certain sense, the mean
field approximation mimics a long range dynamics and in fact it shares
some of the basic features of long range interactions leading to long range
delocalization, as it occurs in Coulomb systems and in gauge theories (in
positive gauges). For a discussion of such common features, which play
a crucial role for the energy spectrum of the Goldstone theorem, see G.
Morchio and F. Strocchi, Erice Lectures 1985, in Fundamental Problems
of Gauge Field Theory, G. Velo and A.S. Wightman eds., Plenum 1986).



12 * Thermal States

The physically relevant representations discussed in Chap. 5 are characterized
by the existence of a lowest energy or ground state and are supposed to de-
scribe states of an infinitely extended isolated system. The situation changes
if one wants to describe states of a system at non-zero temperature (thermal
states), i.e. states of a system in thermal equilibrium with a reservoir. The
stability of the system is now guaranteed by the reservoir and there is no need
of the energy spectral condition. The role of the ground state is now taken
by the equilibrium state and one is therefore led to discuss representations of
the canonical or observable algebra defined by equilibrium states.

As for the zero temperature case, one expects substantial differences with
respect to the finite dimensional case; for infinitely extended systems the
Gibbs factor becomes meaningless in general, because the formal (Fock)
Hamiltonian becomes ill defined in the infinite volume limit. The strategy
is to extract from the finite dimensional case those properties which survive
the thermodynamical limit.121

As a first step we shall discuss the characterization of the equilibrium
states, Sects. 12.1–12.3; then we shall identify those states which describe
pure phases, Sect. 12.4.

12.1 Gibbs States and KMS Condition

According to the principles of quantum statistical mechanics122 the equilib-
rium states of a system in a finite volume V are described by density matrices.

For the description of a system in terms of Gibbs canonical ensemble
(fixed number of particles), the equilibrium states are given by the following
expectations, for any bounded operator A,

Ωβ(A) = Z−1
β Tr (ρβA), ρβ = e−β H , Zβ = Tr e−β H , (12.1)

121 Here we give a sketchy account, in view of the discussion of symmetry breaking
at non-zero temperature. For a beautiful and more detailed presentation see R.
Haag, Local Quantum Physics, 2nd ed. Springer 1996, Ch.V and H.M. Hugen-
holtz, in Mathematics of Contemporary Physics, R.F. Streater ed., Academic
Press 1972.

122 See e.g. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th ed., Claredon
Press Oxford 1958, Sect. 33; K. Huang, loc. cit. 1987.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 139–150
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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where β = 1/T is the inverse temperature, H is the Hamiltonian and Tr
denotes the trace in the Hilbert space H of the states of the system in the
volume V at the given temperature.

Similarly, in the case of Gibbs grand canonical ensemble, corresponding
to a description in which the number of particles is not fixed, the equilibrium
states are given by

Ωβ, µ(A) = Z−1
β, µ Tr (ρβ, µA), ρβ, µ = e−β(H−µN), Zβ, µ = Tr ρβ, µ, (12.2)

where µ is the chemical potential and N is the number operator.
For simplicity, we shall often drop the subscripts β and µ and we shall

generically refer to the states defined by (12.1), (12.2) as Gibbs states on the
C∗-algebra AV = B(H) of all bounded operators in H.

For the thermodynamical limit, the use of the grand canonical ensemble
is more suitable and we shall in general consider the corresponding states;
for simplicity, sometimes we shall still denote by H the “grand canonical
Hamiltonian” H(µ) ≡ H − µN .

It follows easily from (12.1), (12.2) that the Gibbs states are invariant
under time evolution, i.e. they are equilibrium states, e.g.

Ωβ(αt(A)) = Z−1
β Tr(ρβ eiH tAe−iH t) = Ωβ(A),

since ρβ commutes with H.
The states defined by (12.1), (12.2) are not pure states (see (1.7)) and

therefore the GNS representations defined by them are not irreducible. Fur-
thermore, for non-zero particle density, the average energy, which is non-zero
at non-zero temperature, diverges in the infinite volume limit, in agreement
with the physical expectation that the energy per particle is non-zero in the
limit. Thus, the definition of the Hamiltonian in the thermodynamical limit
becomes problematic and suitable subtractions are needed. One is therefore
facing the basic problem of the description of an infinite system and of the
mathematical status of the thermodynamical limit at non-zero temperature.
Clearly, the framework discussed in Chap. 4 for the zero temperature case
requires substantial changes.

For this purpose we recall a few basic mathematical properties of the
Gibbs states. First, we recall that for a system of free particles in a box
exp (−βH0), where H0 is the free Hamiltonian, is of trace class123, i.e.
Tr | exp (−β H0)| < ∞. Under general conditions on the interaction poten-
tial124 also exp (−β H) is of trace class, for all positive β’s.

123 For the properties of trace class operators see e.g. M. Reed and B. Simon, Methods
of Modern Mathematical Physics, Vol. I, Academic Press 1972, Sect. VI.6.

124 D. Ruelle, Helv. Phys. Acta 36, 789 (1963); J. Lebowitz and E. Lieb, Adv.
Math. 9, 316 (1972), Appendix by B. Simon. A sufficient condition is that the
potential U is a small perturbation, i.e. that for any a < 1 there is a b ≥ 0
such that |(Ψ, U Ψ)| < a (Ψ,H0 Ψ) + b (Ψ, Ψ), for all Ψ in the domain of the free
Hamiltonian H0. In fact, the above inequality implies H ≥ (1 − a)H0 − b1 and
e−β H0 of trace class implies e−β H of trace class.
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Since the product of a bounded operator and a trace class operator is an
operator of trace class125, also exp (−β (H − µN)) is of trace class for all β,
for µ in a suitable range, so that H − µN > 0. Thus, under such general
conditions (12.1), (12.2) are well defined.

When dealing with systems in a finite volume, we shall always assume
that ρβ and/or ρβ,µ is of trace class.

Since the thermodynamical limit is a convenient extrapolation for the
description of very large systems, it is physically reasonable to try to extract
those structural properties of the finite dimensional case which are expected
to be stable in the limit.

Theorem 12.1. 126 Under the above general conditions a Gibbs state, given
by (12.1) or (12.2), satisfies the KMS-condition,127 namely

∀A, B ∈ B(H)

F βAB(t) ≡ Ωβ(B αt(A)), GβAB(t) ≡ Ωβ(αt(A)B) (12.3)

are boundary values of analytic functions F βAB(z), GβAB(z), analytic in the
strips 0 < Imz < β and −β < Imz < 0, respectively and

F βAB(t+ iβ) = GβAB(t). (12.4)

Conversely, any state satisfying the KMS-condition, briefly called a KMS-
state, for all bounded operators in a Hilbert space H is a Gibbs state.

125 See e.g. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. I,
Academic Press, Theorem VI.19. The point is that the operators of trace class
form a vector space. In fact, for any partial isometry S, by using Schwarz’ in-
equality one has

|Tr (S|A|)| ≤
∑

n

|| |A|1/2 S∗Ψn|| || |A|1/2 Ψn||

≤ (
∑

n

|| |A|1/2S∗Ψn||2)1/2 (
∑

n

|| |A|1/2 Ψn||2)1/2 = Tr(S|A|S∗))1/2 (Tr |A|)1/2

and Tr (S|A|S∗) ≤ Tr |A|. Then, if U,UA, UB denote the partial isometries oc-
curring in the polar decomposition of A+B, A, B, respectively,

Tr |A+B| ≤ |Tr (U∗UA|A|)| + |Tr (U∗UB |B|)| ≤ Tr |A| + Tr |B|.

Hence, in order to prove that AB is of trace class if B is so and A is bounded, it
suffices to consider the case in which A is self-adjoint and of norm less than one; in
this case A is a linear combination of the unitary operators U± ≡ A±i(1−A2)1/2,
and U± B is clearly of trace class, if B is so, since |U±B| = |B|.

126 R. Haag, N.M. Hugenholtz and M. Winnink, Comm. Math. Phys. 5, 215 (1967),
hereafter referred as [HHW].

127 R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957); P.C. Martin and J. Schwinger, Phys.
Rev. 115 1342 (1959).
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Proof. Given a bounded operator A, for any 0 ≤ γ ≤ β

At+iγ e
−βH ≡ e−γH eiHtAe−iHt e−H(β−γ)

is a bounded operator of trace class, since it is the product of bounded op-
erators with at least one of trace class; furthermore, for 0 < γ < β, is dif-
ferentiable in t, γ (since for any δ > 0, He−δH is a bounded operator) and
satisfies the Cauchy-Riemann equations, so that

F βAB(z) ≡ Tr (e−βH BAz) = Tr (BAz e−βH) = Tr (Az e−βH B) (12.5)

is an analytic function of z = t + iγ, for 0 < Im z < β. Similarly one proves
the analyticity of GβAB(z) for −β < Im z < 0. The KMS boundary condi-
tion, (12.4), follows by taking the boundary value of (12.5) at Im z = β.

Conversely, if for given β the KMS condition holds for the state Ω, then
Ω is invariant under time translations, since (12.4) for B = 1, A = A∗ gives

F βA(t+ iβ) = GβA(t) = F βA(t),

i.e. F βA(t) is periodic in the direction of the imaginary axis, hence analytic
and bounded in the whole complex plane. Hence F βA(t) is a constant.

Now, a state Ω on B(H) can be written as Tr(ρΩ A) with ρΩ a positive
matrix of trace equal to one and the KMS condition for t = 0 gives

Tr(ρΩBe−βH AeβH) = Tr (ρΩ AB), ∀B ∈ B(H).

This implies
e−βHAeβHρΩ = ρΩA,

i.e. [eβHρΩ , A ] = 0, ∀A ∈ B(H). Hence,

ρΩ = Z−1 e−βH , Z = Tr e−βH .

An equivalent form of the KMS condition , which will turn useful in the
applications is the following.128 Let F̃ β(w), G̃β(w) be the (distributional)
Fourier transforms of F β(t), Gβ(t), (defined in (12.3)), respectively. Then

F̃ β(w) = e−β w G̃β(w). (12.6)

This follows from the fact that F β(t), Gβ(t) and F β(t+ iβ) are all bounded
continuous functions of t, hence tempered distributions, and the Fourier
transform of F β(t+ iβ) is eβ wF̃ β(w). By a similar argument one shows that
the KMS condition is equivalent to the following one

∫
f(t− iβ)F β(t)dt =

∫
f(t)Gβ(t)dt, ∀f̃ ∈ D(R). (12.7)

128 [HHW].
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12.2 GNS Representation Defined by a Gibbs State

As we shall see below, the main virtue of the KMS condition with respect to
the Gibbs formula ((12.1) or (12.2)) is that the former one survives the ther-
modynamical limit and can therefore be used to characterize the equilibrium
states in this limit, whereas the Gibbs formula becomes meaningless.

The physical reason is that in the infinite volume limit the average energy
diverges. On the other hand, by Theorem 12.1 quite generally the KMS condi-
tion implies the invariance of the state under time translations and therefore
the existence of a one-parameter group of (strongly continuous) unitary op-
erators U(t), implementing the time translations, in the GNS representation
defined by such a KMS state. The apparent conflict between the existence
of the generator of U(t) and the divergence of the average energy requires a
better understanding of the structure of the GNS representation defined by
a KMS state. Again, we shall start from the case of finite volume.

From the definition of a Gibbs state, we have that Z−1
β ρβ is a positive op-

erator and we denote by r0 its square root; it is a Hilbert-Schmidt operator,
i.e. such that r∗

0 r0 is of trace class. The vector space D0 of Hilbert-Schmidt
operators is invariant under right and left multiplication by bounded opera-
tors129 and it is naturally equipped by a Hilbert scalar product

(Ψr, Ψr) ≡ Tr (r∗ r), (12.8)

where Ψr denotes the vector identified by the Hilbert-Schmidt operator r.
Actually, D0 is a Hilbert space, i.e. it is closed under the topology τ defined
by the above scalar product.130 Then, the Gibbs state defined by ρβ (or by
ρβ,µ) can be written as

Ωβ(A) = Tr (r0Ar0) = (Ψr0 , ΨAr0) ≡ (Ψr0 , π(A)Ψr0). (12.9)

The above equation is well defined since Ar0 = 0 implies A = 0: in fact,
as an operator in the GNS representation space Hβ , r−1

0 = Z
1/2
β eβH/2 has a

dense domain D and therefore 0 = Ar0(r−1
0 D) = AD implies A = 0. This

shows that Ψr0 is a separating vector for the algebra AV , in this subsection
simply denoted by A.

129 See e.g. M. Reed and B. Simon, loc. cit., Theorem VI.22.
130 In fact, τ convergence implies operator norm convergence, since

||B||2 = ||B∗ B|| = sup
||x||=1

(x, B∗Bx) ≤ Tr (B∗ B).

Furthermore, the convergence of Tr (B∗
n Bn) implies that the sequence is

uniformly bounded, so that
∑N

k=1 ||Bn xk||2 ≤ C uniformly in n,N and∑N
k=1 ||B xk||2 ≤ C, uniformly in N ; hence the limit operator B has a finite

Hilbert-Schmidt norm.
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Furthermore Ψr0 is a cyclic vector for A, since

(Ψr, π(A)Ψr0) = Tr (r∗ A r0) = 0

implies Tr (r∗rr0r0) = Tr (r0r∗rr0) = 0, i.e. r r0 = 0 and therefore r = 0.
In conclusion, (12.9) displays the explicit GNS representation π of A

as operators in the GNS representation space Hβ = D0, with a cyclic and
separating vector Ψr0 .

The so-constructed GNS representation space D0 is also the carrier of a
conjugate, i.e. antilinear, representation π′ of A given by

π′(A)Ψr0 = Ψr0A∗ . (12.10)

Clearly, π′(λA) = λ̄ π′(A), ∀λ ∈ C, where λ̄ denotes the complex conjugate
of λ. Furthermore,

||π(A)|| = ||π′(A)|| = ||A||, (12.11)

so that the representation is faithful.131

In order to characterize the infinite volume limit of the KMS states, we
need to derive other general properties of the GNS representation defined by
a Gibbs state (which we shall show to be stable under the thermodynamical
limit). Such additional information is provided by the following theorem.

Theorem 12.2. 132 The GNS representation defined by a Gibbs state has the
following properties
i) the commutant π(A)′ of π(A) is the weak closure of π′(A)

π(A)′ = (π′(A))′′, (12.12)

(equivalently π(A)′′ = (π′(A))′)
ii) there exists an antiunitary operator J such that

J π(A) J = π′(A), ∀A ∈ A, (12.13)

J2 = 1, (12.14)

J Ψr0 = Ψr0 . (12.15)

131 In fact,

||π(A)||2 = sup
r

Tr (r∗A∗Ar)/Tr (r∗r) = sup
r

Tr (Arr∗A∗)/Tr (r∗r)

= sup
r

Tr (Ar∗ rA∗)/Tr(rr∗) = ||π′(A)||2.

The equality ||π(A)||2 = ||A||2 follows since one can choose r as the projection
on a state with spectral support relative to A∗A as close as one likes to ||A||2.

132 [HHW]; see also the book (1996) by Haag and the London lectures (1972) by
Hugenholtz, quoted in footnote 121.
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Proof.

i) By definition

π(A)π′(B)Ψr0 = ΨAr0B∗ = π′(B)π(A)Ψr0 ,

so that π(A) ⊆ (π′(A))′. By taking the weak closure one gets

π(A)′′ ⊆ ((π′(A))′′)′ = (π′(A))′. (12.16)

On the other hand, the subalgebra A0 ⊆ A of Hilbert-Schmidt operators
is a Hilbert algebra133 and for such algebras

π(A0)′′ = (π′(A0))′. (12.17)

Then,
π(A)′′ ⊇ π(A0)′′ = (π′(A0))′ ⊇ π′(A))′. (12.18)

Equations (12.16), (12.18) imply (12.12).
ii) The operator J is defined by J Ψr = Ψr∗ . Equations (12.14), (12.15) are

obvious and (12.13) follows from

J π(A)J Ψr = J π(A)Ψr∗ = J ΨAr∗ = ΨrA∗ = π′(A)Ψr. (12.19)

We can now clarify the relation between the generator of the time trans-
lations and the many particle (Fock) Hamiltonian.

The time invariance of a Gibbs state Ωβ implies that in the correspond-
ing GNS representation the time translations are implemented by a one-
parameter group of unitary operators U(t), t ∈ R (we omit the finite volume
suffix V ). The weak continuity of αt implies that U(t) can be chosen weakly
and therefore strongly continuous. Now, the condition

U(t)π(A)U(t)−1 = π(αt(A)) (12.20)

implies
U(t) = π(UF (t))V (t), (12.21)

where UF (t) is generated by the Fock Hamiltonian HF (or by the Fock oper-
ator HF − µN) (for simplicity, the two possibilities will both be denoted by
H̃F ) and V (t) ∈ π(A)′.

The invariance of Ψr0 under U(t) uniquely fixes V (t). In fact, since π(A)′ =
π′(A)′′, V (t) is of the form V (t) = π′(VF (t)), VF (t) ∈ B(HF ) = A and
therefore

Ψr0 = π(UF (t))π′(VF (t))Ψr0 = ΨUF (t)r0 VF (t)∗ .

Since r0 commutes with UF (t) and the representation is faithful

r0(1 − UF (t)VF (t)∗) = 0, i.e. VF (t) = UF (t).
133 J. Dixmier, Von Neumann algebras, North-Holland 1981, Chap. 1.
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In conclusion the generator of U(t) is not the Fock Hamiltonian HF (or
HF − µN) but

H = π(H̃F ) − π′(H̃F ) (12.22)

where the second term on the right hand side has the meaning of the contri-
bution to the energy by the reservoir.

It is instructive to work out the case of a (quantum) lattice spin sys-
tem and explicitly check the properties i), ii) (in particular (12.17) is easily
proven). We shall leave this exercise to the reader134.

As we shall see below, the occurrence of a subtraction in the definition of
the generator of the time translations allows the existence of the generator H
also in the infinite volume limit, when the average energy becomes divergent
and the Fock Hamiltonian HF (or HF − µN) does not exist.

12.3 KMS States in the Thermodynamical Limit

The power of the KMS condition is that it makes sense also in the thermody-
namical limit and can be used as a characterization of the equilibrium states
in such a limit, where the Gibbs prescription become meaningless. It can ac-
tually be proven that the KMS condition survives the thermodynamical limit
under general conditions, as stated in Theorem 12.3 below.

For this purpose, a few comments on the thermodynanical limit are useful.
A state ΩV describing the system in a finite volume V is a positive linear
functional on A(V ) ⊆ A, (A ≡ the quasi local algebra, see Chap. 4). By the
Hahn-Banach theorem it can be extended to A (the extension of the state
will still be denoted by ΩV ) and therefore, as V varies, one gets a sequence
{ΩV } of states on A. Since the closed unit ball of the dual A∗ of a Banach
space A is compact in the weak topology induced by A, (Alaoglu-Banach
theorem), then by the Bolzano-Weierstrass theorem there is a subsequence
ΩVn

which is weakly convergent, i.e. ∀A ∈ A one has the existence of

lim
n→∞ ΩVn(A).

In conclusion, by the above compactness argument, one can always find a
thermodynamical limit of finite volume states. In general such a limit will
not be unique, different limits corresponding to different boundary conditions
leading to different phases.

Theorem 12.3. 135 Let αVt denote the finite volume (algebraic) dynamics
defined by UV (t) = eiHV t ∈ A, (where HV denotes the finite volume Hamil-
tonian), and ΩV denote the KMS (Gibbs) states at inverse temperature β
(and with given chemical potential µ).

If αVt converges in norm as V → ∞ on the quasi local algebra A to a
one-parameter group αt of * automorphisms of A and Ω is the weak limit of

134 For help see Hugenholtz’s lectures in London (1972).
135 [HHW].
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finite volume states on A
Ω(A) = lim

n→∞ ΩVn(A), ∀A ∈ A, (12.23)

then Ω satisfies the KMS condition.

Proof. In order to prove the KMS condition in the form (12.7) it is enough
to prove that

lim
V→∞

ΩV (B αVt (A)) = Ω(B αt(A)), ∀B, A ∈ A.

Now, putting AVt ≡ αVt (A) we have

|ΩV (BAVt ) −Ω(BAt)| ≤ |Ω(B(AVt −At))| + |(ΩV −Ω)(BAt)|.
Since ΩV is a continuous functional on A, the first term on the right hand side
is bounded by ||B|| ||AVt −At|| which goes to zero as V → ∞ by assumption,
and the second term converges to zero if Ω is the weak limit of ΩV .

One can also show136 that the general properties of KMS (Gibbs) states
derived in Theorem 12.2 remain valid in the thermodynamical limit, namely
the representation πβ defined by a KMS state Ωβ has the following properties:

1) there exists an involution operator J , with J2 = 1, such that

J π(A)′′ J = π(A)′, JΨβ = Ψβ , (12.24)

where the vector Ψβ represents Ωβ in Hβ

2) the time translations are implemented by strongly continuous unitary op-
erators U(t), such that

U(t)Ψβ = Ψβ , [U(t), J ] = 0, (12.25)

3) the generator H of U(t) satisfies

e−β H/2 π(A)Ψβ = J π(A)∗ Ψβ , ∀A ∈ A (12.26)

and by (12.25) HJ − JH = 0.

12.4 Pure Phases. Extremal and Primary KMS States

In this subsection we shall discuss the characterization of the pure phases in
thermodynamics.

First we recall that the thermodynamical phases are defined by equilib-
rium states and the above discussion indicates that the KMS states, being

136 [HHW]; see also Haag’s book (1996) and Hugenholtz’s lectures in London (1972),
where one can also find the connection with the Tomita-Takesaki theory of Von
Neumann algebras.
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the the thermodynamical limit of equilibrium Gibbs states, are the natural
candidates for describing equilibrium states137. Thus, one has to identify the
property of KMS which corresponds to the phase being pure.

In the zero temperature case the pure phases were identified by irreducible
representations, but now, by the previous discussion, in particular (12.24),
the GNS representation defined by a KMS state is not irreducible and ac-
tually its commutant is as big as the weak closure of π(A). The physical
interpretation of such a violation of irreducibility is that the role of the com-
mutant is to account for the “degrees of freedom” of the reservoir, whose
interaction with the system is needed in order to keep the temperature con-
stant. Thus, irreducibility cannot be used to characterize the pure phases at
non-zero temperature.

The relevant property is that the concept of pure phase is related to that
of equilibrium state which is not a mixture of other equilibrium states. KMS
states which cannot be decomposed as mixture of other KMS states are called
extremal and therefore the pure thermodynamical phases can be described
by extremal KMS states.

In general, since in the standard thermodynamical sense pure phases are
defined by homogeneous states, one adds the condition that the corresponding
KMS state are invariant under space translations.

In conclusion, with respect to the zero temperature case discussed in
Chap. 5, for non-zero temperature the conditions which selects the physically
relevant representations have to be modified as follows.

I. (Existence of energy and momentum) The space and time transla-
tions are implemented by strongly continuous groups of unitary operators
(as in Chap. 5).

II. (Thermodynamical stability) The representation is defined by a KMS
state.

III. (Equilibrium state) The KMS state is the unique translationally in-
variant state.

The pure phases are defined by extremal KMS states.
For extremal KMS states, condition III can be replaced by the valid-

ity of the cluster property, as in Chap. 6, thanks to Proposition 6.4, which
states such an equivalence for factorial representations. Whereas in the zero
temperature case factoriality was implied by irreducibility, in the non-zero
temperature case the equivalence between extremal and factorial KMS rep-
resentations is given by the following theorem.

Theorem 12.4. A KMS state Ω is extremal iff its GNS representation π
is factorial, i.e. the center Z = π(A)′′ ∩ π(A)′ consists of multiples of the
identity.

137 For further arguments involving stability properties see Haag’s book (1996),
Sect. V. 3.
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Proof. 138 The proof is split into four steps

1) A KMS state Ω is extremal iff there is no other KMS state ω1, which is
not a multiple of Ω, such that

ω1 ≤ λΩ, λ > 1. (12.27)

In fact, if ω1 exists one has the decomposition

Ω = λ−1 ω1 + (Ω − λ−1 ω1) ≡ ω′
1 + ω2.

Conversely, if Ω is decomposable in terms of KMS states as Ω = ω1 +ω2,
then clearly there exists ω1 < Ω.

2) Equation (12.27) implies (the vector ΨΩ represents Ω)

ω1(B∗A)2 ≤ ω1(B∗B)ω1(A∗A) ≤ λ2Ω(B∗B)Ω(A∗A) =

λ2||π(B)ΨΩ ||2 ||π(A)ΨΩ ||2, ∀A, B ∈ A.
Thus, ω1(B∗A) defines a bounded (densely defined) sesquilinear form on
the GNS representation space defined by Ω and therefore there exists a
unique bounded operator T ′ such that

ω1(B∗A) = (π(B)ΨΩ , T ′ π(A)ΨΩ). (12.28)

Furthermore, T ′ ∈ π(A)′ since ∀A,B,C,∈ A

(π(B)ΨΩ , T ′ π(C)π(A)ΨΩ) = ω1(B∗ C A) = ω1((C∗B)∗A) =

(π(C∗B)ΨΩ , T ′π(A)ΨΩ) = (π(B)ΨΩ , π(C)T ′ π(A)ΨΩ).

3) T ′ is invariant under time translations

T ′
t ≡ U(t)T ′ U(t)−1 = T ′. (12.29)

In fact, [T ′
t , A ] = U(t) [T ′, A−t ]U(−t) = 0, ∀A ∈ A implies T ′

t ∈ π(A)′

and then

(π(A)ΨΩ , T ′
t π(B)ΨΩ) = (ΨΩ , π(A)∗ π(B)T ′

t ΨΩ) =

(ΨΩ , (π(A∗B))−t T ′ ΨΩ) = ω1((A∗B)−t) = ω1(A∗B) =

= (π(A)ΨΩ , T ′ π(B)ΨΩ),

where the invariance of Ω and ω1 under time translations has been used.
138 Here we give a brief sketch, for a detailed proof see e.g. O. Bratteli and

D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol.II,
Springer 1981, Proposition 5.3.29.
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4) Define
T ≡ J T ′ J. (12.30)

It belongs to π(A)′′ by (12.24) and also to π(A)′. In fact, the time trans-
lation invariance of ΨΩ and (12.26) give

TΨΩ = J T ′ JΨΩ = J T ′ ΨΩ = J T ′ e−β H/2 ΨΩ =

= J e−β H/2 T ′ ΨΩ = T ′ΨΩ ,

where in the last step we have used that T ′ ∈ π(A)′ and the strong closure
of (2.26). Therefore

ω1(A) = (ΨΩ , T ′AΨΩ) = (ΨΩ , AT ′ ΨΩ) = (ΨΩ , A T ΨΩ) = Ω(AT ).

To conclude the argument, we use the KMS condition in the following
form

ω(ABt) = ω(Bt−iβ A),

which can be easily derived in the same way as (12.5), and the above
relation Ω(AT ) = ω1(A); thus we get

Ω(ATBC) = Ω(α−iβ(BC)AT ) = ω1(α−iβ(BC)A) =

ω1(α−iβ(B)α−iβ(C)A) = ω1(α−iβ(C)AB) =

= Ω(α−iβ(C)ABT ) = Ω(ABTC),

i.e. [T, B ] = 0, ∀B ∈ A. In conclusion, since T ∈ Z, Ω is extremal iff
Z = {λ1, λ ∈ C}, i.e. its GNS representation is factorial, briefly iff Ω is
a factor state.

The physical relevance of the concept of factor, also called primary, state
is that in the GNS representation defined by it macroscopic observables like
ergodic means or variables at infinity have a sharp (classical) value in agree-
ment with the physical picture of a pure phase in thermodynamics.



13 Fermi and Bose Gas
at Non-zero Temperature

As an example of symmmetry breaking at non-zero temperature we discuss
the free Fermi and Bose gas, starting from finite volume and then discussing
the thermodynamical limit.

1. Free Fermi and Bose Gas in Finite Volume

We consider a system of free fermions or bosons in a finite volume V with a
free Hamiltonian H0 defined by periodic boundary conditions (for simplicity,
for the moment we omit the label V which denotes that we are in a finite
volume). 139 One can then use a Fock representation and the non-zero tem-
perature states are the Gibbs states. In view of the thermodynamical limit to
be considered later, it is convenient to use grand canonical states Ω, (12.2)
with the chemical potential µ to be fixed in such a way that the average
density Ω(N)/V takes a given value ρ̄.

Since H(µ) = H0 − µN commutes with the number operator all the cor-
relation functions with a different number of creation and annihilation opera-
tors vanish. We adopt the usual statistical mechanics notation by which a(f),
the analog of (3.3), is antilinear in f , a∗(f) = a(f)∗ and [ a(f), a∗(g) ]∓ =
(f, g), where [ , ]∓ denotes the commutator/anticommutator and the upper/
lower choice refers to the boson/fermion case.

One easily proves that

ewH(µ) a∗(f) e−wH(µ) = e−wµ a∗(ewh f), w = i t, −β, (13.1)

where h is the restriction of H to the one particle subspace. By using the
above equation one can easily compute the two-point function (z ≡ eβµ, Z =
Tr e−βH(µ))

Z Ω(a∗(f) a(g)) = Tr (e−βH(µ) a∗(f)a(g)) =

= zTr (a∗(e−β h f) e−β H(µ)a(g)) = zTr (e−β H(µ)a(g) a∗(e−β h f)) =

= zTr (e−β H(µ){[a(g), a∗(e−β h f)]∓ ± a∗(e−β hf)a(g)}) =

139 Here we give a short and simplified account; for a mathematical more complete
treatment see O. Bratteli and D.W. Robinson, loc. cit. Vol.II, Sects. 5.2.4, 5.2.5.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 151–157
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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= zZ(g, e−β h f) ± z Z Ω(a∗(e−β h f) a(g)).

In conclusion, one has

Ω(a∗((1 ∓ z e−β h) f) a(g)) = z (g, e−β h f),

i.e., letting f → (1 ∓ ze−β h)−1 f ,

Ω(a∗(f) a(g)) = (g, ze−β h(1 ∓ ze−β h)−1f). (13.2)

By a similar trick, one can easily compute the 2n−point functions and
prove that they can be expressed in terms of products of two-point func-
tions. A state with this property is called a quasi free state. Furthermore,
the correlation function of a product containing a different number of a∗ and
a vanishes, because exp (−βH(µ)) commutes with the number operator and
by computing the trace on a basis of eigenvectors of N , each matrix element
vanishes.

Equation (13.2) yields in particular the expectations

< nk >= Ω(a∗(k) a(q)) = δk,q
e−β (ω(k)−µ)

1 ∓ e−β (ω(k)−µ) , (13.3)

which are the basis of the elementary treatment of the free Bose and Fermi
gas, but (13.2) provides much more detailed information since it determines
all the correlation functions.

2. Free Fermi Gas in the Thermodynamical Limit

We start by discussing the thermodynamical limit of the finite volume dy-
namics

αVt (a(g)) = a(ei t hV g), g ∈ L2(V ),

where the label V has been spelled out to distinguish quantities in the vol-
ume V . Now, since a(f)2 = 0, ‖a(f)‖4 = ‖(a(f)∗a(f))2‖ = ‖a(f)∗{a(f),
a(f)∗}a(f)‖ = ‖f‖2‖a(f)‖2, i.e. ‖a(f)‖ = ‖f‖. Then, since

||αVt (a(g)) − a(eithg)|| = ||(ei t hV − ei t h ) g|| −→
V→∞

0,

the finite volume dynamics converges uniformly to the dynamics defined by

αt(a(g)) = a(ei t h g). (13.4)

For this result a crucial role is played by the fact that a(g), a(g)∗ are bounded
operators and that the free Fermi algebra is generated by them through
products, linear combinations and norm closures.

We can now discuss the thermodynamical limit of the Gibbs (quasi free)
states given by (13.2), with a label V understood.

It is not difficult to see that the correlation functions converge as V → ∞.
In particular the limit of the two-point function is given by (for simplicity we
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put the fermion mass m = 1/2)

ω(a∗(f) a(g)) = (2π)−s
∫
dsp ¯̃g(p) f̃(p) z e−β p2 (1 + ze−β p2)−1, (13.5)

∀f, g ∈ L2(Rs). It is also easy to see that in the infinite volume limit one has
a quasi free state.

The chemical potential µ, which enters in z, is determined by the condition
that the average density

ρ(β, z) = (4π2β)−s/2
∫
dsx z e−x2

(1 + ze−x2
)−1

takes the given value ρ̄.140 In the limit of zero temperature, (β → ∞), one
has

ρ(∞, µ) = (2π)−s
∫
p2≤µ

dsp

and one recovers the analog of (7.8), with µ = k2
F , i.e. the one-particle states

with p2 ≤ µ are occupied (Fermi sphere).
The GNS representation defined by the state (13.5) has a Fock type in-

terpretation in terms of occupation numbers of particles and “holes”. For
this purpose, one introduces new annihilation and creation operators (f, g ∈
L2(Rs))

aω(f) = a(
√

1 − T f) ⊗ 1 + θ ⊗ a∗(K
√
Tf), (13.6)

a∗
ω(g) = a∗(

√
1 − T g) ⊗ 1 + θ ⊗ a(K

√
T g), (13.7)

where T is the positive self-adjoint bounded operator, ||T || ≤ 1, defined by

ω(a∗(f) a(g)) = (T 1/2g, T 1/2f),

θ is an operator which anticommutes with a, a∗ and K is an antilinear invo-
lution (Kf, K g) = (g, f). Then, by introducing the state Ωω ≡ ΩF ⊗ ΩF
on the aω, a∗

ω, where ΩF is the Fock vacuum on the a, a∗, and θΩF = ΩF
(this requirement fully determines θ), we have

ω(a∗(f) a(g)) = (ΩF ⊗ΩF )(a∗
ω(f) aω(g)). (13.8)

At zero temperature, T is the multiplication by the characteristic func-
tion of the Fermi sphere (in momentum space) and aω(f) has the physical
interpretation of destroying a particle outside the Fermi sphere, with wave
function

√
1 − T f and of creating a “hole” inside the Fermi sphere with wave

function K
√
T f .

The above equation (13.8) displays the general properties of a KMS state
at inverse temperature β, on the Von Neumann algebra πω(A)′′ generated by
the aω, a∗

ω.
140 For the explicit inversion see A. Leonard, Phys. Rev. 175, 221 (1968).
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The representation is reducible; in fact the Von Neumann algebra πω ′(A)
generated by the operators

a′
ω(f) = 1 ⊗ a(

√
1 − T f) + a∗(K

√
Tf) ⊗ θ, (13.9)

α∗ ′
ω (g) = 1 ⊗ a∗(

√
1 − T g) + a(K

√
T g) ⊗ θ, (13.10)

commutes with the Von Neumann algebra πω(A)′′ generated by aω, a∗
ω.

The representation is primary. In fact, since πω(A)′′ ⊆ πω
′(A)′, we have

πω(A)′ ∩ πω(A)′′ ⊆ πω(A)′ ∩ πω ′(A)′ = (πω(A)′′ ∪ πω ′(A))′

and since πω(A)′′ ∪ πω
′(A) is a doubled fermionic canonical algebra, which

is irreducibly represented by ω, its commutant consists of multiples of the
identity.

Furthermore, the two equations

πω(A)′′ ∪ πω ′(A) = B(H),

πω(A)′′ ∪ πω(A)′ = (πω(A) ∩ πω(A)′)′ = B(H)

imply
πω(A)′ = πω

′(A). (13.11)

Since πω ′(A) is isomorphic to πω(A)′′, the Von Neumann algebra πω(A)′′ is
isomorphic to its commutant.

It is an instructive exercise to explicitly derive the properties 1-3 listed in
Sect. 12.3, for this specific example.

3. Free Bose Gas in the Thermodynamical Limit

In the Bose case the thermodynamical limit is much more delicate and inter-
esting.

First, to discuss the thermodynamical limit of the finite volume dynamics
one must use the Weyl operators and, as already seen in Sect. 7.2, αVt does not
converge to αt in the uniform (or norm) topology on the quasi local algebra
generated by the local Weyl operators. However, it is not difficult to see that
αVt converges strongly to αt on the algebra generated by the L2-delocalized
Weyl operators U(f), V (g), f, g real and ∈ L2(Rs).

More interesting is the thermodynamical limit of the finite volume Gibbs
states, defined by (13.2), since it displays the occurrence of a “gas-liquid”
phase transition (even if the system is free). For this purpose, we note that
in the finite volume V (putting 2m = 1)

Ω(N)
V

=
z

V (1 − z)
+

1
V

∑
k �=0

z

eβk2 − z
, (13.12)

where z = z(β, V ) has to be chosen in such a way that Ω(N)/V = ρ̄, the
pre-assigned fixed density.
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Since the first term gives the density of particles at zero momentum, which
is therefore a nonnegative quantity, one must have

0 ≤ z(β, V ) ≤ 1.

Furthermore, the second term on the r.h.s. of (13.12) is an increasing function
of z which, in the thermodynamical limit, is given by (z(β) ≡ z(β,∞))

z(β)
(2π)s/2

∫
dsk

1
eβk2 − z(β)

≤ 1
(2π)s/2

∫
dsk

1
eβk2 − 1

≡ ρ′(β).

Therefore, if the given density ρ̄ is greater than ρ′(β), in the thermodynamical
limit z(β, V ) must approach 1 in such a way that

ρ0(β, V ) ≡ z(β, V )
V (1 − z(β, V ))

V→∞−→ ρ̄− ρ′(β) ≡ ρ0(β) �= 0,

i.e. as 1 − (ρ0(β)V )−1. For a given density ρ̄, the critical temperature Tc is
defined by the equation ρ̄ = ρ′(β); it is therefore the temperature at which
the given density ρ̄ coincides with the maximum value of the second term
on the r.h.s. of (13.12). Thus, since ρ′(β) is an increasing function of the
temperature, for any T > Tc, it is always possible to chose a function z(β, V )
in such a way that, in the thermodynamical limit the r.h.s. of (13.12) yields
ρ̄, i.e. the equation

ρ̄ = z(β)(2π)−s/2
∫
dsk (eβk

2 − z(β))−1

always has a solution for z(β), with z(β) < 1.
On the other hand, for T < Tc one has ρ0(β) �= 0 and, for large V ,

z(β, V ) ∼ 1 − (ρ0(β)V )−1.
In conclusion, in the thermodynamical limit (13.2) gives (for simplicity

we consider the case s = 3)

ω(a∗(f) a(g)) = (2π)−3
∫
d3k ¯̃g(k) f̃(k) z(β) (eβ k

2 − z(β))−1, β < βc,

(13.13)

= ρ0(β)f̃(0) ¯̃g(0) + (2π)−3
∫
d3kf̃(k) ¯̃g(k)(eβk

2 − 1)−1, β > βc. (13.14)

Thus, below the critical temperature one has a condensation of particles in
the k = 0 state (Bose-Einstein condensation), i.e. a phase transition between
the gas and the “liquid” phase.

This transition is indeed observed for liquid He4, at the critical tempera-
ture of 2.18o Kel, not so far from the prediction of the free model discussed
above, which gives a critical temperature of 3.14o Kel for the density of the
liquid Helium (for more information see e.g. K. Huang, Statistical mechanics,
Wiley 1987).
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4. Bose-Einstein Condensation and Symmetry Breaking

Below the critical temperature the equilibrium state ω defined by the infinite
volume limit of (13.2) does not satisfy the cluster property, since ω(a(f)) = 0
and on the other hand, by putting ga(x) ≡ g(x+ a), one has

lim
|a|→∞

ω(a∗(f) a(g)) = ρ0(β)f̃(0) g̃(0),

(the second term on the r.h.s. of (13.14) vanishes in the limit by the Riemann-
Lebesgue lemma).

Thus, below the critical temperature, ω can be decomposed into primary
states, which can be shown to be labeled by an angle θ and exhibit the
spontaneous breaking of gauge transformations (defined in Sect. 7.2)

ωθ(a(g)) =
√
ρ0 e

iθ g̃(0). (13.15)

Such a decomposition can be obtained by appealing to general meth-
ods141. It can also be obtained in a rather elementary way by introducing a
symmetry breaking coupling with a constant external field jext = j eiθ, j > 0,
according to the Bogoliubov strategy142 discussed in Chap. 10.

The corresponding finite volume Hamiltonian H (the suffix V is omitted
for simplicity) then is given by

H =
∑
k

(k2 − µ) a∗(k) a(k) + j(a∗
0 e

iθ + a0 e
−iθ)

√
V ,

where a0 ≡ a(k = 0) and can be easily brought to diagonal form

H =
∑
k

(k2 − µ)A∗(k)A(k) + j2V/µ,

in terms of the following new annihilation and creation operators

A(k) = a(k), for k �= 0; A(k = 0) = a0 − (j/µ) eiθ
√
V .

By proceeding as in Sect. 13.1, one easily gets, for the equilibrium state ωj ,
ωj(A(f)) = 0, which implies

ωj(a(f)) = f̃(0)ωj(a0/
√
V ) = f̃(0) eiθ j/µ. (13.16)

Furthermore, the analog of (13.12) gives

ρ ≡ V −1ωj(
∑
k

a∗(k) a(k)) = V −1ωj(
∑
k

A∗(k)A(k)) + j2/µ2

141 See J. Cannon, Comm. Math. Phys. 29, 89 (1973) and O. Bratteli and D.W.
Robinson, loc. cit. Vol.II, pp. 72-73.

142 N.N. Bogoliubov, Lectures on Quantum Statistics, Vol.2, Part 1, Gordon and
Breach, 1970.



13 Fermi and Bose Gas at Non-zero Temperature 157

=
z

V (1 − z)
+

1
V

∑
k �=0

z

eβk2 − z
+

β2 j2

(lnz)2
. (13.17)

The fugacity z = z(β, V, j) has to be chosen in such a way that in the limit
j → 0, taken after the thermodynamical limit, one gets ρ = ρ̄, the pre-
assigned density.

Now, the third term in the r.h.s. of (13.17) is an increasing function of
z, 0 ≤ z ≤ 1, which vanish when z → 0 and tends to infinity when z → 1.
Thus, for any given density ρ̄, the equation

1
(2π)3/2

∫
d3k (eβk

2 − 1) +
β2j2

(lnz)2
= ρ̄ (13.18)

always has a solution z = z(β,∞, j) < 1, and consequently the first term on
the r.h.s. of (13.17) vanishes in the thermodynamical limit. Then, in such a
limit, putting ρ0(β, j) ≡ β2j2/(lnz)2 one gets

ωj(a(f)) = (ρ0(β, j))1/2 eiθ f̃(0). (13.19)

Now we discuss the limit j → 0 by distinguishing two cases:

1) T > Tc. In this case, for any given ρ̄, (13.18), with j = 0, always has
a solution for z = z(β), with 0 < z(β) < 1. Thus, by choosing z so that
z(β,∞, j) → z(β), when j → 0, one gets in this limit

ρ(β, j) → ρ̄, ρ0(β, j) → 0.

Thus, ωj(a(f)) → 0, independently of the way jeiθ → 0, and therefore there
is a unique phase.

2) T < Tc. In this case ρ̄− ρ′(β) > 0 and therefore one must have

ρ0(β, j) ≡ β2j2/(lnz)2
j→0−→ ρ̄− ρ′(β) ≡ ρ0(β) > 0.

This requires to choose z in such a way that z(β,∞, j) → 1, as j → 0; it
suffices to take z(β,∞, j) = exp [−βj (ρ0(β))−1/2]. Then

lim
j→0

ωj(a(f)) = (ρ0(β))1/2 eiθ f̃(0) ≡ ωθ(a(f)). (13.20)

Thus the limit depends on the phase θ of the external field and one has a
one-parameter family of equilibrium states ωθ, θ ∈ [0, 2π). As it is easy to
see, all such states satisfy the cluster property; therefore they are primary
states on the Weyl algebra and define pure phases. Clearly, each state ωθ is
not invariant under gauge transformations, which are therefore spontaneously
broken in each representation defined by ωθ.



14 Quantum Fields at Non-zero Temperature

The general structure discussed above provides a neat and unique prescription
for the quantization of relativistic fields at non-zero temperature (thermofield
theory).

For simplicity we consider the case of a relativistic scalar field (see Ex-
ample 1 in Chap. 2)

φ(x) = (2π)−3/2
∫
d3k (2ωk)−1 [ak e−ikx + a∗

ke
ikx], (14.1)

where kx = k0x0 − k · x, k0 = ωk = (k2 + m2)1/2 and the annihilation
and creation operators have been so normalized that they obey the canonical
commutation relations (CCR) in relativistically covariant form

[ak, a∗
k′ ] = 2ωk δ(k − k′), [ak, ak′ ] = 0. (14.2)

This fixes the algebraic structure.
The equilibrium (gauge invariant) state at inverse temperature β is char-

acterized by the KMS condition, (12.4),

< a∗
k aq >β≡ ωβ(a∗

k aq) = ωβ(aq α−iβ(a∗
k)) = e−β ωk < aq a

∗
k >β ,

where for simplicity we have considered the case of zero chemical potential.
On the other hand, the CCR give

< a∗
k aq >β=< aq a

∗
k >β −2ωkδ(k − q).

In conclusion, one has

< a∗
k aq >= 2ωkN(ωk) δ(k − q), (14.3)

N(ωk) ≡ e−β ωk (1 − e−β ωk)−1 = (eβ ωk − 1)−1.

Then, the CCR and the above equation give for the two-point function of φ,
putting z ≡ x− y,

< φ(x)φ(y) >β=
1

(2π)3

∫
d3k

(2ωk)
e−ik·z [eiωkz0N(ωk) + e−iωkz0(1 +N(ωk))].

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 159–160
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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By using the identity
N(ω) = −(1 +N(−ω)),

one can cast the above two-point function in the form143

< φ(x)φ(y) >β= (2π)−4
∫
d4k δ(k2 −m2)e−ikz ε(k0) (1 +N(k0)). (14.4)

The relativistic spectral condition yields a larger analyticity domain than
in the non-relativistic case; in fact, the two-point function has an analytic
continuation to the domain {z ∈ C4; Imz ∈ V+ ∩ (β,0) + V−} where V±
denote the forward and backward cones (relativistic KMS condition)144.

Historically, the quantization of fields at non-zero temperature has been
done with different strategies, based on the functional integral approach. The
same results can be obtained more directly by exploiting the KMS condition.
For example, the so-called imaginary time (Matsubara) formulation can be
obtained if i) one analytically continues the correlation functions to purely
imaginary time and ii) introduces a complex time ordering of products of
operators with respect to a fixed complex time contour.

As an example we consider the two-point function < AAz >≡ Ω(AAz),
where A denotes a field variable at time zero and Az, z = iτ, −β < τ < β,
the corresponding variable after an imaginary time translation (as in (12.5)).
A (complex) time ordered expectation is defined by

∆T (τ) = θ(τ) Tr (e−β H AAz) + θ(−τ) Tr(e−β H Az A), (14.5)

where θ denotes the Heaviside step function and −β < Imz = τ < β. Thus,
the KMS condition (12.4) gives

∆T (τ + β) = ∆T (τ).

The periodicity implies that only discrete frequencies occur in the Fourier
transform of ∆T .

143 J. Bros and D. Buchholz, Z. Phys. C-Particles and Fields 55, 509 (1992); Nucl.
Phys. B429, 291 (1994).

144 J. Bros and D. Buchholz, previous reference.



15 Breaking of Continuous Symmetries.
Goldstone’s Theorem

For a long time, the mechanism of spontaneous breaking of continuous sym-
metries has been recognized to be at the basis of many collective phenomena
and in particular of phase transitions in statistical mechanics; recently, it
has played a crucial role in the developments of theoretical physics, both at
the level of many body physics and for the unification of elementary particle
interactions.

For relativistic systems and more generally for systems with short range
dynamics, the clarification of the mechanism has been achieved to a high level
of rigor and formalized in the so-called Goldstone’s theorem145. The result
is that the conditions for the applicability of the conclusions, a subject of
discussions in the early developments, are now out of question.

The important point is that the Goldstone theorem provides non-pertur-
bative exact information on the excitation spectrum, since it predicts the low
momentum behaviour of the energy, ω(k) → 0, as k → 0, of the elementary
excitations (Goldstone bosons) associated with the broken symmetry gener-
ators. The examples are many and and they appear in different branches
of physics, like the spin waves in the theory of ferromagnetism, the Landau
phonons in the theory of superfluidity, the phonon excitations in crystals, the
pions as Goldstone particles of chiral symmetry breaking etc.

In this chapter we first give the simple “heuristic proof” of the Goldstone
theorem (in the zero temperature case) without caring about subtle mathe-
matical points; the aim is to show in a simple way the connection between
symmetry breaking of continuous symmetry and absence of energy gap.

The idea is that if the ground state ω of an extended system is not sym-
metric under a continuous symmetry βλ, λ ∈ R, leaving the Hamiltonian

145 J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962); D. Kastler,
D.W. Robinson and J.A. Swieca, Comm. Math. Phys. 2, 108 (1966); D. Kastler,
Broken Symmetries and the Goldstone Theorem in Axiomatic Field theory, in
Proceedings of the 1967 International Conference on Particles and Fields, C.R.
Hagen et al. eds., Interscience 1967; J.A. Swieca, Goldstone theorem and re-
lated topics, in Cargése Lectures in Physics, Vol.4, D. Kastler ed., Gordon and
Breach 1970; R.F. Streater, Spontaneously broken symmetries, in Many degrees
of freedom in Field Theory, L. Streit ed., Plenum Press 1978.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 161–176
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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invariant, then the states ωβR
obtained from ω by applying a symmetry

transformation βR localized in a region of radius R, have the same energy of
the ground state except for boundary terms. Since the symmetry is continu-
ous one can smooth the transition region so that the boundary terms vanish
when R → 0, and so does the energy of the states ωβR

.
To formalize the idea, one abstracts from the Lagrangean (or Hamilto-

nian) formulation the information (Noether’s theorem) that the invariance
under a continuous symmetry βλ implies the existence of a conserved cur-
rent, whose charge density generates the symmetry transformation: namely,
∀A ∈ AL(=the local algebra), the infinitesimal variation under βλ is given
by146

δ A = dβλ(A)/dλ |λ=0 = i lim
R→∞

[QR, A], (15.1)

QR =
∫

|x|≤R
dsx j0(x, 0) (15.2)

∂t j0(x, t) + div j(x, t) = 0. (15.3)

A relevant point is that the above infinitesimal generation of the symmetry
holds for a subalgebra A0 of A, containing AL, stable under time translations.
The above equations encode the essential features of a continuous symmetry
without relying on the definition of the Lagrangean.

For symmetries which commute with space and time translations, the
current transforms covariantly under space and time translations

U(a, τ)jµ(x, t)U(a, τ)−1 = jµ(x + a, t+ τ), µ = 0, 1, ... (15.4)

Briefly, an internal continuous symmetry βλ satisfying the above prop-
erties is said to be locally generated by a charge density associated with a
conserved current.

15.1 The Goldstone’s Theorem

The (heuristic) version of the Goldstone theorem147, which does not use rela-
tivity, says (A = A∗ covers the general case since any B is = B1 + iB2, Bi =
B∗
i ):

Theorem 15.1. (Goldstone) If

I. βλ, λ ∈ R is a one-parameter internal symmetry group, i.e.

[βλ, αx] = 0, [βλ, αt] = 0, ∀λ ∈ R, x ∈ Rs, t ∈ R (15.5)
146 Equation (15.1) may be understood to hold as a bilinear form on a dense set of

states, in each relevant representation; actually, all what is needed is its validity
on the ground state.

147 The non-relativistic version has been discussed in particular by R.V. Lange,
Phys. Rev. Lett. 14, 3 (1965); Phys. Rev. 146, 301 (1966) and by J.A. Swieca,
Comm. Math. Phys. 4, 1 (1967).
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II. βλ is locally generated by a charge in the sense of (15.1-4) on a subal-
gebra A0 of A, stable under time evolution

III. βλ is spontaneusly broken in a representation π defined by a translation-
ally invariant ground state Ψ0, i.e. there exists a (selfadjoint) A ∈ A0
such that

< δA >0= i lim
R→∞

< [QR, A] >0= b �= 0, (15.6)

then, in the subspace generated by the vectors QRΨ0, R ∈ R, the en-
ergy spectrum at zero momentum cannot have a gap (with re-
spect to the ground state energy).

Proof. Information on the energy momentum spectrum of the state QRΨ0
is provided by the support of the Fourier transform of the matrix elements
(AΨ0, U(x)U(t)QRΨ0), or, in particular, of their imaginary part. This follows
from the spectral theorem for U(x)U(t) (or by inserting a complete set of
improper eigenstates of energy and momentum, see footnote below).

Thus, we are led to analyze the Fourier transform of

J(x, t) ≡ i < [j0(x, t), A] >0= 2 Im < Aj0(x, t) >0 . (15.7)

By using the property that βλ commutes with αt and that it is generated
by QR on an algebra stable under time translations, we have (QR(t) =
U(t)QRU(t)−1),

i lim
R→∞

< [QR(t), A] >0= i lim
R→∞

< [QR, α−t(A)] >0=< δ(α−t(A)) >0

=< α−t(δA) >0=< δA >0= i lim
R→∞

< [QR, A] >0= b. (15.8)

Then, we have

lim
R→∞

∫
|x|≤R

dsxJ(x, t) = b,

namely, by Fourier transforming in x and t,

lim
k→0

J̃(k, ω) = (2π)−1b δ(ω). (15.9)

This is incompatible with an energy gap at k → 0.148

The above standard (heuristic) argument would completely settle the
statement of Goldstone’s theorem (apart from somewhat pedantic mathemat-
ical polishing) were it not for the existence of physically interesting models
which seem to evade the conclusions of the theorem. The attention on these

148 In fact, if |k, ω(k)l, l > denote the improper eigenstates of momentum and energy,
with l the additional quantum numbers needed to remove possible degeneracies,
then limk→0 ωl(k) ≥ µ > 0 implies that

lim
k→0

J̃(k, ωl) = lim
k→0

4π2 2 Im
∑

l

< AΨ0 |k, ωl, l >< k, ωl, l | j0(0, 0)Ψ0 >

cannot satisfy (15.9).
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examples arose especially in the early sixties in connections with attempts
to interpret the SU(3) eightfold way as a spontaneously broken symmetry,
notwithstanding the absence of the corresponding Goldstone bosons. Among
such examples we mention the BCS model of superconductivity, where the
U(1) internal symmetry is spontaneously broken in presence of an energy gap,
the breaking of the Galilei symmetry in Coulomb systems, which is accom-
panied by the plasmon energy gap, the breaking of the axial U(1) symmetry
in quantum chromodynamics (QCD) with no corresponding Goldstone boson
(the so-called U(1) problem), etc.

Clearly, in such examples some of the assumptions of the theorem must
fail, but the long discussions on the possible mechanisms for evading the
conclusions of the theorem seem to have led more to a series of catchwords
or perturbative prescriptions, rather than to a sharp and clear identification
of the crucial points. For non-relativistic systems, the standard explanation
for the presence of an energy gap is that the Coulomb potential leads to a
shift of energy (at k → 0), by a mechanism advocated on the basis of clever
ad hoc approximations, rather than in terms of a general non-perturbative
mechanism. The problem with such an explanation is that long range corre-
lations and interactions of the Coulomb type, which always occur when there
are massless particles, do not invalidate the applicability of the theorem in
relativistic local quantum field theory. For the U(1) problem, the standard
explanation, in terms of the chiral anomaly and instanton calculations, does
not seem to provide a general clearcut solution and some questions remain
open.149

The above considerations justify a critical analysis of the hypotheses of
the theorem and their verification. As we shall see, the standard explanations
of the “evasion” of the theorem are somewhat incomplete, if not misleading,
since they seem to overlook the basic delicate points and miss the general
mechanism.

15.2 A Critical Look at the Hypotheses of Goldstone Theorem

The importance and usefulness of the Goldstone theorem is mainly that of
providing non-perturbative information on the energy spectrum of an infi-
nite system. For this purpose it is crucial to be able to verify its assumptions
without having to solve the full dynamical problem. We shall therefore criti-
cally discuss the hypotheses of the theorem and their possible verification; as
a result we shall discover the general mechanism which is at the basis of the
phenomenon of spontaneous breaking of a continuous symmetry accompanied
by an energy gap.

149 For a critical discussion see F. Strocchi, Selected Topics on the General Properties
of Quantum Field theory, World Scientific (1993), Sect. 7.4 iv.
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I. Symmetry of the Dynamics

At a formal level, the existence of an internal symmetry is inferred from
the invariance of the formal Hamiltonian (or Lagrangean) which (formally)
defines the model.

Now, the commutation of the symmetry βλ with the space translations
αx is a kinematical property which is easily checked, once the action of βλ

on the canonical variables (or on the observables) is specified.
Less obvious is the check of the commutation of βλ with the time trans-

lations αt, since in general the infinite volume dynamics is not explicitly
known.

Proposition 15.2. If the finite volume dynamics αVt , defined by the finite
volume Hamiltonian HV , converges to the infinite volume dynamics αt in the
norm topology, then

βλ αVt = αVt β
λ (15.10)

implies
βλ αt = αt β

λ. (15.11)

Proof. In fact, *- automorphisms of a C∗-algebra are norm preserving and
therefore continuous in the norm topology

βλαt(A) = βλ(αt − αVt )(A) + αVt β
λ(A) −→

V→∞
αt β

λ(A).

Thus, the check of (15.11) is reduced to the invariance of the finite volume
Hamiltonian and the current wisdom is essentially correct.

II. Generation of the Symmetry by a Local Charge

Much more problematic and subtle is condition II, the precise formulation of
which involves properties with important physical consequences.

i) Local charge as an integral of a density
First, for technical reasons (see below), it is convenient to smooth out the
sharp boundary in (15.2), by introducing a C∞ function of compact sup-
port150 (for simplicity we omit the boldface notation for the variable x ∈ Rs)

fR(x) = f(|x|/R), f ∈ D(R), (15.12)

f(x) = 1, for |x| ≤ 1, f(x) = 0, for |x| ≥ 1 + ε,

and replace the definition of QR(t) in (15.2), (15.6), by

QR(t) =
∫
dx fR(x) j0(x, t) ≡ j0(fR, t). (15.13)

150 As we shall discuss below, for relativistic systems also a smearing in time is
necessary to cope with the ultraviolet singularities.
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Even with such a proviso, the limit R → ∞, i.e. the formal integral Q(t) =∫
dx j0(x, t), does not exist and therefore it does not define an operator, since

by (15.4) the current density does not “decrease” for |x| → ∞.
Much better are the convergence properties of the integral of the commu-

tator
J (x, t) = i [j0(x, t), A],

with a local operator A, since J (x, t) at least vanishes for |x| → ∞, by
asymptotic abelianess and actually has compact support if j0 and A satisfy
the relativistic locality property (Chap. 4, (4.2)).

It is implicit in (15.1) that J (x, t) must be at least integrable in x. For
a mathematical control of the proof, one actually needs that J (x, t) is abso-
lutely integrable in x for large |x|.151 Thus, one must supplement the condi-
tion of local generation by a charge with the

A) integrability condition of the charge density commutators
It shall be briefly called charge integrability condition and it means that
the ground state expectation values of the charge density commutators are
absolutely integrable in x for large |x|, as tempered distributions in t, i.e.
∀g ∈ S(R)

<

∫
dt g(t) [j0(x, t), A] >0 (15.14)

is absolutely integrable in x for large |x|.
Such an integrability condition is satisfied if j0 and A satisfy the relativis-

tic locality condition, since the smearing with g(t) ∈ S can at worse change
the compact support in x of J(x, t) to a fast decrease.152

More generally, the condition is satisfied by systems with short range dy-
namics, namely if ∀A,B ∈ AL, as distributions in t,

lim
|x|→∞

|x|s+ε < [Ax, αt(B)] >0= 0, (15.15)

where s = space dimensions, ε > 0. This is the case of spin systems with
short range interactions (see Sect. 7.3).

It is worthwhile to note that the charge integrability condition, (15.14), is
much weaker than (15.15), since it involves a special operator j0; as we shall
see below, (15.15) fails in models with long range interactions, whereas there
are indications that the charge integrability condition holds.

In conclusion, the charge integrability should be taken as part of the defi-
nition that βλ is locally generated by a charge density; the physical meaning

151 G. Morchio and F. Strocchi, Comm. Math. Phys. 99, 153 (1985); Jour. Math.
Phys. 28 622 (1987). The crucial role of such a condition for the non-relativistic
version of the Goldstone theorem and the need of a careful handling of the
distributional and measure theoretical problems do not seem to have been noted
in the vast previous literature.

152 This can be seen, e.g. by using the Jost-Lehmann-Dyson representation.
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is that βλ can be reasonably well approximated by *-automorphisms βλR with
good localization properties. As we shall see below, such condition leads to
the existence of quasi particles with infinite lifetime in the limit of zero mo-
mentum (Goldstone quasi particles).

ii) Local generation by a charge and time evolution
The really delicate issue (not sufficiently emphasized in the literature), which
crucially enters in the proof of the theorem, is the condition that the local
generation by a charge, (15.6), holds on an algebra stable under time evolu-
tion. An equivalent condition is that QR and QR(t) = αt(QR) generate the
same automorphism.

Equation (15.6) can be easily checked on the time zero algebra generated
by the canonical variables at time t = 0, since this is a purely kinematical
question which involves the CCR or the ACR. The problem is whether (15.6)
remains true when A is replaced by αt(A). This is not trivial to check, because
the infinite volume dynamics αt is not explicitly known and the limit R → ∞
involved in (15.6) may not commute with the infinite volume limit of αVt .

The heuristic argument that “since the Hamiltonian commutes with βλ

the charge which generates βλ is independent of time, i.e. Q(t) = Q(0),” and
therefore

lim
R→∞

[QR(t), A] = lim
R→∞

[QR(0), A]

is not correct, because it overlooks the following important points. A global
charge as algebraic generator of βλ does not exist if the symmetry is broken
(we have already remarked that the formal integral of j0 does not define an
operator), and one can only speak of a local generation of βλ in terms of
local charges, so that a limit R → ∞ is unavoidably involved in (15.6). The
commutation of βλ with αt does not imply that the limit of the commutator
[QR(t), A] is time independent; in fact, the symmetry of the finite volume
Hamiltonian

lim
R→∞

[QR, HV ] = 0

implies the time independence of the limit of the commutator [QR(t), A],
provided the two limits R → ∞, V → ∞ commute. In fact, in this case one
has

lim
R→∞

[Q̇R(0), A] = i lim
R→∞

lim
V→∞

[ [HV , QR(0)], A] =

= i lim
V→∞

lim
R→∞

[ [HV , QR(0) ], A ] = 0.

These remarks may look pedantic and with little physical relevance, but
they actually identify the crucial point which invalidates the heuristic argu-
ment and is at the basis of the apparent evasion of the Goldstone theorem by
the physically relevant examples mentioned above. As a matter of fact, the
interchangeability of the two limits depends on the localization properties
of the dynamics, which in turn are governed by the range of the potential.
Indeed, for short range interactions the dynamics essentially preserves the



168 Part II: Symmetry Breaking in Quantum Systems

localization of the operators, so that the limit R → ∞ is essentially reached
for finite R and the interchange of the limits is allowed.

The role of the delocalization effects of the time evolution can be explicitly
displayed by working out the implications of the current conservation on the
time dependence of the charge commutator

[Q̇R(t), A] = −
∫
dx fR(x)[ div j(x, t), A] =

∫
dx∇fR(x) [ j(x, t), A].

(15.16)
Now, since supp ∇fR(x) ⊂ {R ≤ |x| ≤ R(1 + ε)} the time independence of
the charge commutator in the limit R → ∞ is governed by the fall off of the
commutator [ j(x, t), A] for |x| → ∞.

As pointed out by Swieca,153 the time independence of the charge com-
mutators holds if the time evolution is sufficiently local, i.e. if in s space
dimensions ∀A, B ∈ AL

lim
|x|→∞

|x|s−1[Ax, αt(B)] = 0, (15.17)

(Swieca condition). In fact, if (15.17) holds, ∀δ > 0,∃L such that for |x| > L, t
in a compact set,

|x|s−1 | < [ j(x, t), A] >0 | < δ

and therefore the r.h.s. of (15.16) is bounded by (y ≡ x/R)

δ

∫
dx |∇fR(x)| |x|1−s = δ

∫
dy |∇ f(y)| |y|1−s = δ C.

This implies that

| < [QR(t) −QR(0), A] >0 | ≤
∫ t

0
dt′ | < [ Q̇R(t′), A] >0 | ≤ δ C t,

i.e.
lim
R→∞

< [QR(t), A] >0= lim
R→∞

< [QR(0), A] >0 . (15.18)

The Swieca condition is clearly satisfied if the dynamics is strictly local,
i.e. it maps AL into AL. This is the case of systems satisfying the relativistic
locality condition (see Sect. 4.1). More generally, it is enough that the delocal-
ization induced by the dynamics falls off exponentially, namely, ∀A, B ∈ AL

lim
|x|→∞

|x|n [Ax, αt(B)] = 0, ∀n ∈ N. (15.19)

As we have seen, this is the case of free non-relativistic systems (see Sect. 7.2)
and the case of spin systems on a lattice with short range interactions (see
Sect. 7.3). There are arguments (see below) indicating that property (15.18)

153 J.A. Swieca, Comm. Math. Phys. 4 , 1 (1967).
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should hold also for non-relativistic systems with exponentially decreasing
interaction potentials.154

The above discussion indicates that for systems with sufficiently local
dynamics the verification of conditions I, II of the Goldstone theorem is
essentially reduced to the symmetry of the finite volume Hamiltonian and
to the check that the symmetry is generated by a local charge at equal times.
Thus, in these cases the heuristic criteria for the application of the Goldstone
theorem are essentially correct.

It is worthwhile to remark that the local properties of the current and of
the operator A, which gives rise to the symmetry breaking order parameter,
are both crucial for the time independence of (15.6) and may be problem-
atic even in the case of relativistic systems. As a matter of fact, the axial
U(1) symmetry of QCD Lagrangean is not generated by a local conserved
current in positive gauges and similarly the order parameter, which breaks
the gauge symmetry in the Higgs effect in positive gauges, is not given by a
local operator.155

The discriminating point is not the existence of long range correlations,
which may also be present in strictly local theories, but the delocalization in-
duced by the time evolution, typically as a consequence of the non-relativistic
approximation.

For systems with long range dynamics, the symmetry of the (finite vol-
ume) Hamiltonian and the local generation of the symmetry by a local charge
at equal times (the standard heuristic criteria for the applicability of the the-
orem) are not enough to conclude that the hypotheses of the Goldstone the-
orem are satisfied. This is the way the conclusions of the Goldstone theorem
are evaded by the physically relevant examples mentioned above exhibiting a
spontaneous symmetry breaking, which satisfies the heuristic criteria but is
accompanied by an energy gap. The somewhat misterious statement that the
long range Coulomb potential leads to an energy shift should be interpreted,
in the light of the above discussion, as the time dependence of the charge
commutators due to the long range delocalization induced by time evolution.

A more explicit discussion of the effect the delocalization induced by long
range dynamics, as in the case of Coulomb systems, shall be done below.

iii) Dynamical delocalization and range of the interaction
The crucial role of the localization properties of the dynamics for the check
of the hypotheses of Goldstone’s theorem suggests to get some concrete idea
on the relation with the range of the interaction.

154 J.A. Swieca, loc. cit. (1967).
155 G. Morchio and F. Strocchi, Infrared problem, Higgs phenomenon and long range

interactions, in Fundamental Problems of Gauge Field Theory, Erice School 1985,
G. Velo and A.S. Wightman eds., Plenum Press 1986; F. Strocchi, Selected Top-
ics on the General Properties of Quantum Field Theory, World Scientific 1993,
Sect. 7.4.
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For this purpose, we consider a non-relativistic many body system de-
scribed by the following finite volume Hamiltonian

HV = H0,V + gHint,V = (1/2m)
∫
V

dx |∇ψ(x)|2+

+(g/2)
∫
V

dx dy V(x− y)ψ∗(x)ψ∗(y)ψ(y)ψ(x), (15.20)

where V(x) = V(−x) denotes a two body interaction potential. To avoid
the discussion of short distance singularities we assume that the potential
vanishes in a neighborhood of the origin.

An interaction Hamiltonian of this type, with V the Coulomb potential,
occurs in the theory of non-relativistic Coulomb systems as well as in the
time evolution of charged fields in positive gauges, like the Coulomb gauge
in quantum electrodynamics.156

It is worthwhile to remark that in the case of short range potential the
above formal Hamiltonian is supposed to define the dynamics through its
finite volume restriction and a suitable limit of the corresponding finite vol-
ume dynamics. For long range potentials, like e.g. the Coulomb potential, a
counter term has to be added in order to be able to remove the volume cutoff
in the equations of motion (on a class of states with enough regularity at
space infinity) (infrared renormalization).

A convenient possibility157 is to use the following infrared cutoff Hamil-
tonian with an infrared counter term

HL = H0 + gHint,L = (1/2m)
∫
dx |∇ψ(x)|2+

+(g/2)
∫
dx dy VL(x− y)ψ∗(x) (ψ∗(y)ψ(y) − 2ρL )ψ(x), (15.21)

where
VL(x) ≡ V(x) fL(x), ρL ≡ L−3

∫
|x|<L

dxψ∗(x)ψ(x),

fL is defined in (15.12) and ρL has the meaning of an average density, which
converges to an element ρ∞ of the center, in the limit in which the infrared
cutoff L is removed, L → ∞, (on a class of states regular at infinity, as
explained below). Apart from a (infrared divergent) c-number term which
does not affect the commutators, the interaction term can be written as

(g/2)
∫
dx dy V(x− y) ρ(x) ρ(y), ρ(x) ≡ (ψ∗ ψ)(x) − ρL. (15.22)

The corresponding equations of motion are (putting for simplicity 2m = 1)

i
d

dt
ψ = (−∆+ g(VL ∗ ρ)(x))ψ(x) +O(L−3). (15.23)

156 See e.g J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw-Hill
Book Company 1965, Sect. 15.2.

157 G. Morchio and F. Strocchi, Ann. Phys. 170, 310 (1986), esp. Sect. 3.
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The effect of the infrared counter term is to subtract the interaction with
the average density. The removal of the infrared cutoff requires that, for
Coulomb systems in three space dimensions, the density (ψ∗ψ)(x) approaches
the average density at large distances faster than |x|−2.158 Such an infrared
regularization shall be understood even if not spelled out explicitly.

We can now discuss the delocalization induced by the dynamics. The
kinetic term has a local effect since it gives rise to an exponentially depressed
delocalization (see Sect. 7.2). The crucial term is the interaction and its effect
in the case of long range potential can be displayed in the limit in which the
kinetic term is neglected (equivalently in the limit of large mass). In this
limit,159 the equation of motion

i
d

dt
ψ(x, t) = g

∫
dy V(x− y) ρ(y, t)ψ(x, t) (15.24)

is exactly solvable, since it implies

d

dt
ρ(x, t) = 0

and it is therefore solved by

ψ(x, t) = exp [−igt
∫
dy V(x− y) ρ(y, 0)]ψ(x, 0) ≡ T (x, t)ψ(x, 0). (15.25)

For our purposes the relevant point is the delocalization property of the
dynamics as displayed by the fall off of the field (anti)commutators at different
times, which in the special case at hand is given by

[ψ(x, t), ψ∗(y, 0) ]± = ∓(e−i t gV(x−y) − 1)ψ∗(y, 0)T (x, t)ψ(x, 0)+

δ(x− y)T (x, t), (15.26)

where the ± refers to the fermion/boson case, respectively. Thus, for large
space separations the r.h.s. decreases like tV(x− y), i.e. the dynamical delo-
calization of the (anti)commutators of the canonical variables is given by the
range of the interaction potential.

On the basis of the above result, Swieca argues that such a connection
between the dynamical delocalization and the range of the potential should
remain valid also when one takes into account both the interaction term
and the kinetic term, since the latter one by itself induces an exponentially
decreasing delocalization and should therefore essentially maintain the delo-
calization induced by the former (Swieca’s argument).

158 This means that the class of infrared regular states ω must have the property
that their correlation functions |x|−1ω(Aρ(x)B), A, B any polynomials in the
fields ψ, ψ∗, are absolutely integrable in x.

159 We follow J.A. Swieca, Comm. Math. Phys. 4, 1 (1967).
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Swieca’s argument can be further supported by a simple computation
using Zassenhaus’ formula160

eλ(A+B) = eλA eλB eλ
2C2 eλ

3C3 ...

where the operators Cn are computed recursively

C2 = − 1
2 [A, B], C3 = 1

3 [B, [A, B]] + 1
6 [A, [A, B]], etc.

By applying the formula to the evolution operator H = H0 +H1, one gets

e−it(H0+H1) = e−itH1 e−itH0 et
2 1

2 [H1, H0] e−it3 ( 1
3 [H0, [H1, H0]]+ 1

6 [H1, [H1, H0]])...

Now, the evolution due to the first two terms can be computed explicitly by
using Swieca’s results and the third term corresponds to an interaction which
involves local operators and a “potential”, which decreases faster than V. In
fact one has

i[H0, gHint ] = 1
2g

∫
dx dy∇V(x− y) [ j(x)ρ(y) + ρ(y)j(x) ].

Similarly, for the fourth term one has

i[H0, i[H0, gHint]] = 1
2g

∫
dx dy∇V(x− y) ∂0

t [ j(x)ρ(y) + ρ(y)j(x) ],

where ∂0
t denotes the derivative with respect to time of the operators with

time evolution defined by the free Hamiltonian H0 and j denotes the (vec-
tor part of) the current. Thus again one has an interaction involving local
operators and a “potential” ∇V. Moreover, for the second term in C3 one has

[Hint, [H0, Hint]] =
∫
dx dy∇kV(x− y) ∇kρ(x) ρ(y)

∫
dz V(x− z)ρ(z)

+2
∫
dx dy∇kV(x− y)(ψ∗ψ)(x)ρ(y)

∫
dz∇kV(x− z)ρ(z).

Again, one has the derivative of the potential.
In any case, the effect of such terms on the evolution of the field operators

gives rise to contributions to the field (anti)commutators at different times
with faster decrease than that of V because they involve derivatives of the
potential or of the fields.

The same conclusions are reached if one expands the time evolution of
the fields in powers of t. To each order, the leading contribution to the large
distance delocalization of the commutator is given by the potential; all other

160 W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954); R.M. Wilcox, Jour.
Math. Phys. 8, 962 (1967).
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terms involve derivatives of V. For example, one has

ψ(x, t) = ψ(x, 0) + i t (∆− g V ∗ ρ)ψ(x, 0)+

− 1
2 t

2[(∆− gV ∗ ρ)(∆− gV ∗ ρ) − ig∇V ∗ j ]ψ(x, 0) + ...

where all the functions inside the square bracket are computed at the space
point x and at zero time.

Then, when one takes the (anti)commutator with ψ∗(y, 0) most of the
terms contain derivatives of V and the large distance decay is governed by
the fall off of the interaction potential V.

The above arguments indicate that the large distance delocalization of
the field (anti)commutators is given by the decay of the two-body potential
and, therefore, Swieca’s condition is satisfied if in s dimensions the potential
decreases faster than |x|1−s. In three dimensions this would imply that V(x) ∼
|x|−2 is the critical decay.

Actually, since Swieca’s condition is relevant for estimating the right hand
side of (15.6) and typically the current, being proportional to the momentum
density, involves derivatives of the fields, the critical decay may turn out
to be one power slower. In fact, this mechanism is clearly displayed in the
approximation in which the kinetic term is neglected (see above); the current
density at time t is

jk(x, t) = jk(x, 0) − 2 t g (ψ∗ ((∇kV) ∗ ρ)ψ)(x, 0)

and the commutator with ψ∗(y, 0) is

[jk(x, t), ψ∗(y, 0)] = −2t g (ψ∗ (∇kV) ∗ ρ)(x, 0) δ(x− y) + local terms.

Thus, the delocalization is given by the derivative of the potential.
The same conclusion is reached by expanding the time evolution induced

by the full Hamiltonian in powers of t. To first order in t one has:

jk(x, t) = jk(x, 0) + t[(∆∇kψ
∗)ψ + ψ∗∆∇kψ − g ψ∗ ((∇kV) ∗ ρ)ψ](x, 0)−

−g t∇k[ψ∗ (V ∗ ρ)ψ ](x, 0) +O(t2).

Thus, apart from local terms, the contributions to the large distance delocali-
zation of the field (anti)commutators [ jk(x, t), ψ(y, 0) ] either decrease as the
derivative of the potential or like ∇k[ρ(x, 0)V(x)], i.e. faster than the poten-
tial, since V(x)ρ(x) must be absolutely integrable as a regularity condition
on the states for the removal of the infrared cutoff (see the above discussion).

It may be interesting to note that in the above class of models the charge
integrability condition is satisfied even in the presence of long range poten-
tials. In fact, in the approximation in which the kinetic term is neglected (see
the above discussion) one has

ρ(x, t) = ρ(x, 0)

and the property follows from the equal time (anti)commutators.
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The same conclusion is reached by expanding the time evolution, induced
by the full Hamiltonian, in powers of t. For example, to order t2 one has

ρ(x, t) − eitH0ρ(x, 0)e−itH0 = 1
2 t

2 g

∫
dy∇k (∇kV(x− y)ρ(x, 0) ρ(y, 0)),

(15.27)
which combines the faster decrease of the derivatives of the potential with
the vanishing of ρ(x) at large distances faster than |x|−2; this is a regularity
condition on the states which is needed for the removal of the infrared cutoff
in the equations of motion.

15.3 The Goldstone Theorem with Mathematical Flavor

After the critical discussion of the hypotheses we revisit the simple proof of
Sect. 15.1 with a mathematical care also because the usual proofs for non-
relativistic systems do not have the same level of rigor and sharpness as in
the relativistic case.

Theorem 15.3. (Non-relativistic Goldstone Theorem)161 If

I. βλ, λ ∈ R is a one-parameter internal symmetry group, i.e.

[βλ, αx] = 0, [βλ, αt] = 0, ∀λ ∈ R, x ∈ Rs, t ∈ R, (15.28)

II. on a subalgebra A0 of A, stable under time evolution, βλ is locally gener-
ated by a charge in the sense of (15.1,15.3-4), with QR defined by (15.12-
13) and satisfying the charge integrability condition (15.14),

III. βλ is spontaneously broken in a representation π defined by a translation-
ally invariant ground state Ψ0, in the sense that there exists a (selfadjoint)
A ∈ A0 such that

< δA >0= i lim
R→∞

< [QR, A] >0= b �= 0, (15.29)

then, in such a representation, there exist quasi particle excitations with
infinite lifetime in the limit k → 0 and with energy ω(k) → 0 as k → 0
(Goldstone quasi particles). The corresponding states have non-trivial
components in the subspaces {π(αt(A))Ψ0}, {π(QR)Ψ0}.

Remark 1. To avoid distributional problems it is convenient to consider a
regularized charge density commutator (for simplicity the boldface notations
for vectors in Rs is omitted and j0(fx) ≡ ∫ dy fx(y) j0(y, 0))

Jf (x, t) ≡ i < [ j0(fx), α−t(A) ] >0 , (15.30)

with fx(y) = f(x+ y) ∈ Sreal(Rs),
∫
f(y)dy = 1. By the integrability of the

161 G. Morchio and F. Strocchi, Jour. Math. Phys. 28, 622 (1987).
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charge density commutators one has
∫
dx Jf (x, t) =

∫
dx dyf(x+ y)J(y, t) =

∫
dy J(y, t),

as a distribution in t. Moreover, as a distribution in t, Jf is absolutely inte-
grable in x
∫
dx|Jf (x, t)| ≤

∫
dx dy|f(x+ y)| |J(y, t)| =

∫
dz |f(z)|

∫
dy |J(y, t)|.

Thus

J(t) ≡ i lim
R→∞

< [j0(fR), αt(A)] >=
∫
dy J(y, t) =

∫
dx Jf (x, t).

Remark 2. From a physical as well as a mathematical point of view, the issue
is the relation between the limit R → ∞ and the zero momentum limit of the
energy spectrum. In fact, the time independence of limR→∞ < [QR(t), A] >0
implies that its Fourier transform is proportional to δ(ω); one has to prove
that the point ω = 0 arises from states orthogonal to the ground state and it
is the limit of the energy spectrum when k → 0. This is essentially guaranteed
by the charge integrability condition which ensures that J̃(k, t) is a continuous
function of k, so that the limit R → ∞, which corresponds to the limit k → 0
of J̃(k, t), is related to the continuous limit of the energy spectral support on
real symmetric test functions g̃(ω) = ¯̃g(ω) = g̃(−ω)

lim
k→0

J̃(k, ω) = −2(2π)2 lim
k→0

Im < j0(f)Ψ0, dE(ω) dE(k)AΨ0 >0 .

The charge integrability (condition) settles the problem of the possible non-
continuity of J̃(k, ω) at k → 0, raised by Klein and Lee162 as a mechanism for
evading the Goldstone theorem and accounting for an energy gap associated
to symmetry breaking. The recourse to (approximate) locality to guarantee
analyticity in k, as advocated by Kibble and collaborators,163 isolates a much
too strong condition, which in particular is not satisfied by non-relativistic
systems with long range dynamics, whereas, as discussed in Sect. 15.2, the
integrability of the charge density commutators seems general enough.

Proof. By the spectral theorem applied to U(x)U(−t) one has that J̃f (k, ω)
is a measure in k and ω and by the regularity of f it is a finite measure in k.
Furthermore, by the absolute integrability (in x) of Jf (x, t), one has that, as

162 A. Klein and B.W Lee, Phys. Rev. Lett. 12, 266 (1964).
163 T.W.B. Kibble, Broken Symmetries, in Proc. Internat. Conf. on Elementary

Particles, Oxford 1965, p.19; G.S. Guralnik, C.R. Hagen and T.W.B. Kibble,
Broken Symmetries and the Goldstone Theorem, in Advances in Particle Physics,
Vol 2., R.L. Cool, R.E. Marshak eds., Interscience 1968.
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a distribution in ω, J̃f (k, ω) is continuous in k as k → 0. Thus

J̃(ω) = lim
k→0

J̃(k, ω) = J̃(0, ω).

By definition J(t) is real, so that J̃(ω) = J̃(−ω) vanishes on test functions
g̃(ω) = −¯̃g(−ω), whereas if g̃(ω) = ¯̃g(−ω) one has

J̃(g̃) = (2π)2 lim
k→0

i

∫
dω g̃(ω)[< j0(f)Ψ0, dE(−ω) dE(k)AΨ0 >0

−< jo(f)Ψ0, dE(ω) dE(−k)AΨ0 >0]

= −2(2π)2Im
∫
dω g̃(ω) < j0(f)Ψ0, dE(−ω) dE(k = 0)AΨ0 >0 .

Thus, as a distribution on real symmetric test functions

J̃(ω) = −2(2π)2Im < j0(f)Ψ0, dE(−ω) dE(k = 0)AΨ0 >0 . (15.31)

In conclusion, in the limit k → 0 the imaginary part of the matrix elements of
the energy spectral projection between the states j0(f)Ψ0 and AΨ0 is given
by J̃(ω). As in Sect. 15.1, the stability under time evolution of the algebra
A0 on which βλ is generated by QR implies that J(t) is independent of time
so that J̃(ω) ∼ δ(ω); moreover, by the above argument, ω = 0 is the limit of
the energy spectral support when k → 0.

The ground state cannot contribute to J̃(ω) since, for real symmetric test
functions g̃(ω), h̃(k), < j0(f)dE(g̃) dE(h̃) >0< A >0 is real. The infinite
lifetime is implied by the continuity in k of the energy spectrum, which shrinks
to zero when k → 0.

The above version of the Goldstone theorem improves the standard treat-
ment (for non-relativistic systems) in i) identifying the relevant hypotheses,
in a way which looks applicable to the physically interesting cases, ii) empha-
sizing the role of the localization properties of the dynamics, iii) predicting
the existence of quasi particle Goldstone bosons.

As we shall see, the existence of stable Goldstone particles is related to
relativistic locality and spectrum.



16 * The Goldstone Theorem
at Non-zero Temperature

The proof of the Goldstone theorem can be easily extended to the case of
non-zero temperature T = 1/β, i.e. to representations defined by KMS states.
In this case, the interest of the theorem is in the prediction of the Goldstone
quasi particles, and the derivation of such a prediction crucially depends on
the integrability of the charge density commutators. The absence of an energy
gap (as in Theorem 15.1) is not very significant, since it is already implied
by general properties (like timelike clustering) of the KMS states.164

As we shall see, in the non-zero temperature case the fine mathematical
points discussed in Sect. 15.3, e.g. the distributional properties of J(x, t),
become more relevant also in view of some puzzling statements that have
appeared in the literature.

Theorem 16.1. (Non-relativistic Goldstone Theorem for T �= 0)
Under the assumptions I, II, III of Theorem 15.3, with π a representation
defined by a translationallly invariant KMS state Ω, the same conclusions
hold (existence Goldstone quasi particles).

Moreover, if < > denotes the expectation on Ω, the Fourier transform
W̃(k, ω) of the two-point function

W(x, t) ≡< j0(fx)αt(A) >,

satisfies (with b defined in (15.29))

i lim
k→0

[ W̃(k, ω) − W̃(−k,−ω)] = b δ(ω), (16.1)

164 R. Haag, D. Kastler and E.B. Trych-Pohlmeyer, Comm. Math. Phys. 38,137
(1974), Prop. 3. As a consequence of this result, several papers have been devoted
to a version of the Goldstone theorem which relates symmetry breaking to poor
clustering, rather than to the absence of energy gap: L. Landau, J. Fernando
Perez and W.F. Wreszinski, Jour. Stat. Phys. 26, 755 (1981); Ph. Martin, Nuovo
Cim. 68, 302 (1982); M. Fannes, J.V. Pulé and A. Verbeure, Lett. Math. Phys. 6,
385 (1982) and the reviews Ch. Gruber and P.A. Martin, Goldstone theorem in
Statistical mechanics, in Mathematical Problems in Theoretical Physics, (Berlin
Conference 1981), R. Schrader et al. eds., Springer 1982, p. 25; W.F. Wreszinski,
Fortschr. Phys. 35, 379 (1987).

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 177–179
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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as a distribution in ω, and

lim
k→0

[ W̃(k, ω) + W̃(−k,−ω) ] = 2i (b/β) δ′(ω) (16.2)

as a distribution in ω on test functions g(ω) ∈ (1−e−β ω) S(R), in particular
on antisymmetric test functions of compact support.

Proof. The first part follows as in Theorem 15.3; by the same arguments
one has

J̃(ω) ≡ lim
k→0

J̃(k, ω) = i lim
k→0

[ W̃(k, ω) − W̃(−k,−ω)] =

lim
k→0

−2(2π)2Im < j0(f) dE(ω) dE(k)A >= b δ(ω), (16.3)

as a distribution in ω.
Now, the KMS condition gives

J̃(k, ω) = i (1 − e−β ω)W̃(k, ω) (16.4)

and, by the reality of J(x, t),

J̃(k, ω) = J̃(−k,−ω) = −i (1 − eβ ω)W̃(−k,−ω). (16.5)

By adding (16.4) to (16.5) times e−βω, one gets

(1 + e−β ω) J̃(k, ω) = i (1 − e−β ω) [ W̃(k, ω) + W̃(−k,−ω) ]. (16.6)

The charge (commutator) integrability condition implies that the right hand
side is a continuous function of k, as a distribution in ω, so that, on test
functions g(ω) ∈ (1 − e−β ω) S(R), also the term in square brackets on the
r.h.s. of (16.6) has a limit for k → 0.

Then (16.3), (16.6) imply (16.2). Clearly (1−e−β ω) S(R) contains all the
antisymmetric test functions of compact support.

The occurrence of the δ′ should not appear strange; by the unitarity of the
space and time translations W̃(k, ω) is a measure in (k, ω) , but in general it
is not a measure in ω for k fixed, in particular it needs not to be a measure in
the limit k → 0. By the charge integrability condition J̃(k, ω) and therefore
(1 − e−β ω) W̃(k, ω) is a continuous function of k as a distribution in ω, but
this does not imply that W̃(k, ω) is a continuous function of k as a measure
in ω and in particular that it is a measure in ω in the limit k → 0.165

165 Such an incorrect implication is at the basis of no go theorems about spontaneous
symmetry breaking at non-zero temperature as in R. Requardt, Jour. Phys. A:
Math. Gen. 13, 1769 (1980), Theorem 1. For a discussion of these problems and
its relevance for the derivation of the f -sum rule and of the long-wavelength
“perfect screening” sum rule, see G. Morchio and F. Strocchi, Ann. Phys. 185,
241 (1988); Errata 191, 400 (1989) ; there one can also find a detailed discussion
of the case j0(x) = ρ(x), A = ρ̇(x).
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Such a continuity in k as a measure in ω would hold if the charge density
commutator is absolutely integrable, uniformly in time.

These mathematical delicate points are clearly displayed by the free Bose
gas or by the massless scalar field and it is instructive to work out these
applications of the general statements.

For example, for a massless scalar field ϕ(x, t) at non-zero temperature
T = 1/β, the charge density ∂0ϕ, associated to the conserved current ∂µϕ,
generates the spontaneously broken symmetry: ϕ → ϕ+ λ. According to the
discussion of Chap. 14, one can compute the two-point function < ϕ̇(x, t)
ϕ(y, t′) > and its Fourier transform −iωW̃(k, ω), getting

−iωW̃(k, ω) = 1
2 i (1 − e−β ω)−1 [ δ(ω − |k|) − e−β|k| δ(ω + |k|) ].

It is continuous in k as a distribution in ω, but it is easy to see that it is not
a measure in ω in the limit k → 0.166 It is also clear that the charge (com-
mutator) integrability condition holds as a distribution in the time variable.

Similar features are shared by the gauge symmetry breaking in the free
Bose gas for T < Tc. The expectations ωθ([j0(x), αt(a(h))]), h ∈ S, with
j0(x) = ψ∗(x)ψ(x) are absolutely integrable in x.167 Even if one uses a sub-
tracted density js0(x) ≡ j0(x) − ωθ(j0(x)), however, the two-point function
W (x, t) ≡ ωθ(js0(x)αt(a(h))) is not integrable in x.168

166 In fact, after smearing with a test function g(ω), one has

W̃(k,−iωg) ≡
∫
dω W̃(k, ω)(−iω) g(ω) =

= 1
2 i(1 − e−β |k|)−1[ g(|k|) − e−β |k| g(−|k|) ]

∼k→0 1
2 i[ g(0) + |k| g′(0) (1 + e−β |k|)/(1 − e−β |k|)],

so that , W̃(0,−iωg) = (i/2) [ g(0) + 2g′(0)/β]. Thus, −iωW̃(k, ω) is not a mea-
sure in ω in the limit k → 0.

167 By the CCR and (13.20), such expectations are proportional to the Fourier trans-
form of h(k) exp ik2t ∈ S.

168 By using (13.14), (13.15) and the quasi free property of ωθ one has

ωθ((a∗(q) a(q′)− < a∗(q) a(q′) >) a(p)) = ρ
1/2
0 eiθ δ(q − p) δ(q′) (eβq2 − 1)−1.

Therefore
W̃ (k, ω) = ρ

1/2
0 eiθ h(k) δ(ω − k2) (eβ ω − 1)−1,

which is not continuous in k (not even as a distribution in ω).



17 The Goldstone Theorem
for Relativistic Local Fields

Relativistic systems, like elementary particles, are described by an algebra of
observables Aobs which satisfies the causality condition, (4.2), and is stable
under the automorphisms α(a, Λ) which describe space time translations and
Lorentz transformations (with parameters a, Λ respectively). The physically
relevant representations of Aobs have to satisfy the relativistic version of
conditions I-III (Chap. 5).

I. (Poincaré Covariance) The automorphisms α(a, Λ) are implemented
by a strongly continuous group of unitary operators U(a, Λ).

II. (Relativistic spectral condition)

H ≥ 0, H2 − P2 ≥ 0,

equivalently, the Fourier transform of the matrix elements of U(a) have
support in the closed forward cone V + = {p2 ≥ 0, p0 ≥ 0}.

III. (Vacuum state) There is a unique space-time translationally invariant
state Ψ0 (vacuum state) cyclic for the algebra Aobs.

As we have also seen in the case of non-relativistic systems (e.g. the free
Bose gas) it is convenient (if not necessary) for the formulation and solution
of the dynamical problem to work with an extension of the algebra of observ-
ables. This amounts to introducing a field algebra F which plays the role of
the algebra of canonical variables of the non-relativistic systems. The algebra
F is generated by a set of fields {ϕj(x), x = (x, x0), j ∈ I = finite index set},
which are operator valued (tempered) distributions and in general transform
covariantly under the Poincare’ group

U(a, Λ(A))ϕj(x)U(a, Λ(A))−1 = Sjk(A−1)ϕk(Λ(A)x+ a), A ∈ SL(2,C),

(17.1)

where Sjk is a finite dimensional representation of SL(2,C) (the universal
covering of the restricted Lorentz group L↑

+). For example for a scalar field
ϕ, Sjk = 1 and for a vector field jµ, Sµ ν(Λ−1) = (Λ−1)νµ etc.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 181–188
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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The construction of a C∗-algebra AF ⊃ Aobs, in terms of the polynomial
algebra F generated by the smeared fields {ϕj(f), f ∈ S(R4) } requires self-
adjoint conditions on the smeared fields, which are not easy to control (in
contrast with the finite dimensional case). Therefore, following Wightman169

and also in analogy with the perturbative approach to quantum field theory,
one usually works directly with the (polynomial) field algebra F .

In general, it is not automatic that the field algebra F , needed for the
formulation and solution of the dynamical problem, is a local algebra, i.e. it
satisfies (4.2) or its extension for anticommuting fields. For example, this is
not the case of the Coulomb gauge field algebra of quantum electrodynamics
(QED), where the electron field ψ and the electromagnetic field Fµ ν do not
commute at spacelike separations; moreover, ψ and the vector potential do
not transform as in (17.1).

On the other hand, a local covariant field algebra F is at the basis of the
so-called renormalizable gauges of gauge quantum field theory (as e.g. the
Feynman gauge in QED), at the price that the vacuum state is not a positive
functional on F .170

Even in this more general case without positivity171 one can introduce the
concept of symmetry breaking of a one-parameter group of automorphisms
βλ of F , when the vacuum expectation values (v.e.v.) of the fields, briefly
denoted by < A >0, ∀A ∈ F , are not invariant under βλ, i.e. < δA >0 �= 0,
for some A ∈ F . One may then investigate the consequences of such breaking
for the spectral support of the Fourier transforms of the v.e.v.

We shall now discuss a version of the Goldstone theorem, which applies to
local field algebras with v.e.v. which satisfy space-time translation invariance,
relativistic spectral support, but not necessarily positivity.172

169 R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That,
Benjamin-Cummings 1980.

170 For a general discussion of the interplay between locality and positivity in gauge
quantum field theory see F. Strocchi, Selected Topics on the General Properties
of Quantum Field Theory, World Scientific 1993 and references therein.

171 For the discussion of this more general formulation of quantum field theories,
which is particularly relevant for two-dimensional models involving a massless
scalar field and for gauge quantum field theories see F. Strocchi and A.S. Wight-
man, Jour. Math. Phys. 15, 2198 (1974); G. Morchio and F. Strocchi, Ann. Inst.
H. Poincaré, A 33, 251 (1980) and for a general review F. Strocchi, Selected Top-
ics on the General Properties of Quantum Field Theory, World Scientific 1993,
Chap. VI.

172 F. Strocchi, Comm. Math. Phys. 56, 57 (1977).
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Theorem 17.1. (Goldstone Theorem for relativistic local fields) Let βλ be a
one-parameter group of *-automorphisms of the field algebra F , which

I. commutes with space-time translations,
II. is locally generated by a charge, in the sense that there is a local covariant

conserved current jµ such that ∀A ∈ F

δA = i lim
R→∞

[QR, A ],

QR ≡ j0(fR, α) ≡
∫
d4x fR(x)α(x0) j0(x, x0), (17.2)

with fR as in (15.12), and

α ∈ D(R), suppα ⊆ [−δ, δ], α̃(0) =
∫
dx0 α(x0) = 1. (17.3)

III. is spontaneously broken in the sense that there exists at least one A ∈ F
with < δA >0 �= 0.
Then, the Fourier transform of the two-point function < j0(x)A > con-
tains a δ(p2) singularity (Goldstone massless modes).

Remark 1. Relativistic local fields are more singular than non-relativistic
fields and therefore a smearing in time is necessary to get mathematically well
defined objects;173 this is the reason for the introduction of the test function
α(x0) and α̃(0) = 1 is merely a normalization condition. Indeed, even for a
free Dirac field jµ(x, x0) is a distribution in the four variables, which does not
admit a restriction at fixed time; in fact the commutator [ j0(x, x0), ji(y, x0) ]
is a divergent Schwinger term.174 However, the introduction of the smearing
with α does not spoil the simple meaning of condition II and its possible
control, thanks to the following Lemma.

Remark 2. For the symmetry breaking condition it is enough to consider the
case in which A is localized in a bounded space time region, briefly A ∈ Floc,
since < δ A >0= 0 for all such A implies the invariance for all A ∈ F by a
density argument.

Lemma 17.2. As a consequence of locality, for any A ∈ F the limit R → ∞
in (17.2) exists and it is independent of α (with α̃(0) = 1).

Proof. In fact, if A is a local field with compact support K, the commutator
[ jµ(x, α), A ] vanishes by locality for |x| sufficiently large and for a general

173 A.S. Wightman, Ann. Inst. H. Poincaré, I, 403 (1964).
174 For a simple discussion see e.g. F. Strocchi, Selected Topics on the General Prop-

erties of Quantum Field Theory, World Scientific 1993, Sect. 4.5.
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A ∈ F the commutator decreases faster than any inverse power of |x|. There-
fore, the integrability of the charge commutators is automatically satisfied
(the local integrability is not a problem as discussed in Sect. 15.2).

Moreover, if α1, α2 ∈ D(R) are two normalized test functions, then

α1 − α2 = dβ/dx0, β(x0) ≡
∫ x0

−∞
dx′

0 (α1(x′
0) − α2(x′

0)) ∈ D(R),

and by current conservation, ∂µ jµ = 0,

[ j0(fR, α1) − j0(fR, α2), A ] = −[ ∂0j0(fR, β), A ] = [ j(∇fR, β), A ].

Since supp ∇fR ⊆ {R ≤ |x| ≤ R(1+ε)}, the localization region of j(∇fR, β)
becomes spacelike with respect to any (bounded) compact set K and the
commutator vanishes by locality.

Remark 3. The argument of the Lemma can be adapted to the case in which
A is replaced by a local field variable, say ϕ(y, y0), since [j0(fR, α), ϕ(y, y0)]
is a well defined operator valued distribution in y, y0 and by locality the limit
R → ∞ exists and it is actually reached for R large enough. By the same
argument as above, such a limit is independent of α and therefore taking
α1(x0) = α(x0 −y0), with α as in (17.3), the limit of shrinking support δ → 0
exists and defines a regularized version of the equal time commutator between
j0(fR, x0) and ϕ(y, x0), for R large enough.175

Remark 4. As a consequence of the above Lemma, the delicate problems
of the non-relativistic case (discussed in Sect. 15.2) do not arise for local
field algebras. By Remark 3, the existence and identification of a (conserved)
current which generates a given (algebraic) symmetry βλ can be inferred by
using the (equal time) CCR (or ACR) and the stability under time evolution
is guaranteed by the independence of α.

The proof of the theorem is particularly simple if the order parameter
is given by a local field, say ϕ(y, y0), which transforms as in (17.1), briefly
called an elementary field (for a generic element A ∈ F , one can easily obtain
covariance under space time translations by putting Ax = αx(A), but then
the transformation under the Poincaré group is not given by (17.1)). The
Lorentz invariance of the v.e.v. requires that the order parameter is a scalar
and thus one may take ϕ a scalar. This is the case considered in the classic
work of Goldstone, Salam and Weinberg,176 which we reproduce below in a
somewhat simplified version.

175 The effectiveness of such a regularization in giving finite results is clearly dis-
played by the equal time commutator [j0(fR, x0), ji(y, x0)], for a free Dirac cur-
rent.

176 J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962).
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Proof for elementary fields. The Poincaré covariance implies that

Jµ(x− y) ≡< jµ(x)ϕ(y) >0= (Λ−1)νµ Jν(Λ(x− y))

and therefore by a general result177

Jµ(x) = ∂µF (x), F (x) = F (Λx). (17.4)

Now, current conservation implies

�F (x) = 0,

so that the Fourier transform is of the form F̃ (p) = f(p)δ(p2). Finally, the
symmetry breaking condition III excludes f(p) = 0.

The Goldstone-Salam-Weinberg (GSW) version of the Goldstone theorem
does not cover the case in which the symmetry breaking involves a polynomial
of the fields (or a composite field). For these reasons a more general version
is important.178

177 K. Hepp, Helv. Phys. Acta 36, 355 (1963). The proof of (17.4) can be reduced to
an exercise in relativistic kinematics. By Poincaré covariance the Fourier trans-
form Jµ(p) satisfies Jµ(p) = (Λ−1)ν

µJν(Λp) and therefore if q = Rp, R a rota-
tion,

|p|2 Ji(p0,p) − pipkJk(p0,p) = |q|2(R−1 J)i(p0,q) − (R−1q)iqk Jk(p0,q).

The l.h.s. vanishes for p pointing in the i- direction and therefore, multiplying
the r.h.s. by R, for any q �= 0, Ji(q0,q) = qi q·J(q)/|q|2. Again, by using rotation
covariance, (omitting the variable p0),

F (p) ≡ p · J(p) = p ·R−1J(Rp) = Rp · J(Rp) = F (Rp),

i.e. F = F (|p|). Similarly J0(p) = J0(p0, |p|). Moreover, by using covariance
under Lorentz boosts, e.g. boosts in the 3-direction, one has Ji(p0, p3, p1, p2) =
Ji(Λ(p0, p3), p1, p2), i = 1, 2, i.e. they are functions of the boost invariant com-
bination p2

0 − p2
3. Then, by rotation invariance, F (p0, |p|) = F (p2). Finally

J3(p) = p3F (p2) = ((Λ)−1)03 J0(Λp) = ((Λ)−1)33 (Λp)3 F (p2)

= ((Λ)−1)03 J0(Λp) + p3F (p2) + ((Λ)−1)03(Λp)0F (p2),

i.e. J0(p) = p0 F (p2).
178 D. Kastler, D.W. Robinson and A. Swieca, Comm. Math. Phys. 2, 108 (1966); H.

Ezawa and J.A. Swieca, Comm. Math. Phys. 5, 330 (1967). See also the beautiful
reviews: D. Kastler, Broken Symmetries and the Goldstone Theorem, in Proc.
1967 Int. Conf. on Partcles and Fields (Rochester), C.R. Hagen et al. eds., Wiley
1967; J.A. Swieca, Goldstone Theorem and Related Topics, in Chargèse Lectures
4, D. Kastler ed., Gordon and Breach 1969.
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Such a general proof also makes clear that locality and not Lorentz co-
variance, as one may be led to believe on the basis of the GSW version, is the
crucial ingredient. Actually, the non-covariance of the fields of the Coulomb
gauge, rather than their non-locality, has been taken as explanation of the
evasion of the Goldstone theorem by Higgs179 in his proposal of the so-called
Higgs mechanism. As a matter of fact, for the two-point function of elemen-
tary fields Lorentz covariance and locality are deeply related180 and therefore
it is not strange that the GSW proof, which exploits Lorentz covariance, may
hide the role of locality. On the other hand, the recognition of the role of
locality and its failure in positive gauges establishes a strong bridge between
gauge quantum field theories and many body theories like superconductivity
and Coulomb systems (see the discussion in Sect. 15.2).

Proof of Theorem 17.1. The proof exploits the general representation of
the v.e.v. of the commutator of two local fields, known as the Jost-Lehmann-
Dyson (JLD) representation,181 which reads

−i J(x) ≡< [ j0(x), A] >0= i

∫
dm2

∫
d3y{ρ1(m2,y)∆(x − y, x0;m2)+

ρ2(m2,y) ∆̇(x − y, x0;m2)}, A ∈ Floc , (17.5)

where i∆(x, x0;m2) is the commutator function < [ϕ(x), ϕ(0)] >0 of a free
scalar field ϕ of mass m. The spectral functions ρi(m2,y), i = 1, 2, are
tempered distributions in m2 (actually measures if positivity holds), with
compact support in y as a consequence of locality, since the l.h.s. vanishes
for x sufficiently large; the convolution in y and the integration in m2 have
to be understood as performed after smearing in x, with a test function of
compact support.

The crucial ingredients for the derivation of the JLD formula are the
localization properties of the commutator and the support in the forward cone
of the Fourier transform of < j0(x)A >0, as a consequence of the spectral

179 P.W. Higgs, Phys. Lett. 12, 133 (1964).
180 J. Bros, H. Epstein and V. Glaser, Comm. Math. Phys. 6, 77 (1967).
181 R. Jost and H. Lehmann, Nuovo Cim. 5, 1598 (1957); F. Dyson, Phys. Rev. 110,

1460 (1958); H. Araki, K. Hepp and D. Ruelle, Helv. Acta Phys. 35, 164 (1962);
A.S. Wightman, Analytic functions of several complex variables, in Dispersion
Relations and Elementary Particles,(Les Houches Lectures), C. de Witt and R.
Omnes eds., Wiley 1961; H. Araki, Mathematical Theory of Quantum Fields,
Oxford Univ. Press 1999, Sect. 4.5.
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condition. For a rigorous proof of the JLD representation we refer to the
references given in the previous footnote.182

Now, following Ezawa and Swieca, by locality ρi(m2,y) can be written as

ρi(m2,y) = ρi(m
2) δ(y) + ∇ · σi(m2,y), (17.6)

ρi(m
2) =

∫
d3y ρi(m2,y),

with σi of compact support in y.183

By locality, the second term in (17.6) does not contribute to the charge
commutator for R sufficiently large; in fact, the operator ∇ can be shifted
to ∆(x − y, x0;m2) and then to fR(x), by partial integrations, so that the
integration involves only points {x − y, x0; |x| ≥ R, y ∈ suppσi}, which are
spacelike for R sufficiently large and ∆ vanishes there by locality.

Thus, for R large enough,

< [j0(fR, α), A] >0= i

∫
dm2{ρ1(m

2)∆(fR, α;m2) + ρ2(m
2)∆̇(fR, α;m2)}

and
∆(fR, α;m2) ≡

∫
d4x∆(x, x0;m2) fR(x)α(x0) =

(−i/2π)
∫
d3p f̃R(p)(2p0)−1[α̃(p0) − α̃(−p0)],

182 The following heuristic argument (which does not consider the technical distri-
butional problems) may illustrate the origin and the physical meaning of the
JLD formula, (in the positive case). By inserting a complete set of improper
eigenstates of the momentum |p,m2 >, m2 ≡ p2, p0 ≡ (p2 +m2)1/2, one has

−i J(x) =
∫
dm2 d3p/(2p0) eip·x [J−(p,m2) cos(p0x0) − iJ+(p,m2) sin(p0x0)],

J±(p,m2) ≡< j0|p,m2 >< p,m2|A > ± < A|p,m2 >< p,m2|j0 > .

Since
∆(x, x0;m2) = −(2π)−3

∫
sin(p0x0)eip·x d3p/p0

and cos(p0x0) = p−1
0 d sin(p0x0)/dx0, the integrations in d3p give rise to con-

volutions, leading to (17.5), with ρi(m2,y), i = 1, 2, the Fourier transforms of
iJ+(p,m2)/2 and of −J−(p,m2)/2p0, respectively.

183 In fact, a distribution ρ(x) ∈ S ′(R) of compact support can be written in the
form

ρ(x) = δ(x)
∫
dy ρ(y) + ∂xσ(x), σ(x) ≡

∫ x

−∞
dx′[ρ(x′) − δ(x′)

∫
dy ρ(y)],

with σ of compact support. The extension to S ′(Rn) is obtained by iteratively
applying the above decomposition to each variable.
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∆̇(fR, α;m2) = −1/4π
∫
d3p fR(p) [α̃(p0) + α̃(−p0)], p0 ≡ (p2 +m2)1/2.

For α(x0) real and symmetric one has α̃(p0) = α̃(−p0) and only the second
term contributes, so that (since fR(p) → (2π)3/2 δ(p)) one has

lim
R→∞

< [j0(fR, α), A] >0= −i
√

2π
∫ ∞

0
dm2 ρ2(m

2) α̃(
√
m2). (17.7)

By Lemma 17.2, the r.h.s. is a functional of α̃, which depends only on the
value that α̃ takes at the origin and therefore

ρ2(m
2) = λδ(m2), λ ∈ C. (17.8)

The symmetry breaking condition implies λ �= 0 and therefore the Fourier
transform of two-point function < j0(x)A >0 contains a δ(p2).



18 An Extension of Goldstone Theorem
to Non-symmetric Hamiltonians

The Goldstone theorem and its rigorous predictions on the energy spectrum
at zero momentum can be extended184 to the case in which the Hamilto-
nian H is not symmetric, but it has simple transformation properties in the
sense that the multiple commutators of H and the charge Q generate a finite
dimensional Lie algebra, briefly

[Qi, H ] = cikQ
k.

The invariance of the dynamics is then replaced by

I. (Covariance group of the dynamics)
There exists a Lie group G of *-automorphisms αg, g ∈ G, of a subalge-
bra A0 ⊆ A, which contains the dynamics αt as a one-parameter subgroup;
for simplicity, in the following, αg is assumed to commute with the space
translations αx.

II. (Local generation of the covariance group)
The covariance group αg, g ∈ G is locally generated by charge densities

δiA ≡ ∂αg(A)/∂gi|g=0 = i lim
R→∞

[QiR, A ], A ∈ A0, (18.1)

QiR(t) = αt(QiR) =
∫
dx fR(x) ji0(x, t)),

and the charge density commutators are absolutely integrable (for large |x|)
as tempered distributions in t, (the local charge generating αt is the infrared
regularized Hamiltonian HL).185

Furthermore, the local charges satisfy the Lie algebra relations (as com-
mutators on A0)

lim
R→∞

lim
S→∞

[ [QiS , Q
j
R ], A] = lim

S→∞
lim
R→∞

[ [QiS , Q
j
R], A]

184 G. Morchio and F. Strocchi, Ann. Phys. 185, 241 (1988).
185 As remarked in the standard case, the above commutators as well as the following

ones are understood as bilinear forms on a dense set of states in each relevant
representation; actually, all what is needed is their validity in the expectations
on the ground state.

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 189–192
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2005
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= lim
R→∞

cijk [QkR, A ], ∀A ∈ A0, (18.2)

where cijk are the structure constants of the group G.
The interchange of the order of the limits in the above equation qualifies

the local generation of the group G; in particular choosing g1 = t, cik ≡ c1ik ,
one obtains the local covariance properties of the Hamiltonian (as commuta-
tors on A0)

lim
L→∞

lim
R→∞

[ [QiR, HL], A] = lim
R→∞

lim
L→∞

[ [QiR, HL], A] = lim
R→∞

cik [QkR, A].

(18.3)
The following notion is relevant for the extended version of the Goldstone

theorem.

Definition 18.1. Given an n × n matrix C = {Cij}, a vector J is said to
have spectral support {ω1, ...ωk}, relative to C, if it is the linear combination
of generalized eigenvectors of C, i.e. if one has

J =
k∑

α=1

aα w
α, aα �= 0, (C − ωα)nα wα = 0, nα ∈ N. (18.4)

Theorem 18.2. 186 Let G be the covariance group of the dynamics satisfying
the above conditions I, II and
III.(Symmetry breaking condition) G is spontaneously broken in a represen-
tation π defined by a transationally invariant ground state Ψ0, i.e. for some
index i and for some (selfadjoint) A ∈ A0

J i(t) ≡ i lim
R→∞

< [QiR(t), A ] >0 �= 0. (18.5)

Let c̃ be the “reduced” matrix, with matrix elements c̃j k = 0 if Jj(t) and/or
Jk(t) is identically zero for all t and c̃j k = cjk, (defined in (18.3)), otherwise.

Then, there are quasi particle excitations with infinite lifetime in the limit
k → 0 (generalized Goldstone quasi particles) with an energy spectrum
at k → 0 given by the positive eigenvalues of c̃ which belong to the spectral
support of J i(0).

Proof. By using (18.3) and (18.4) we have

i
d

dt
J i(t) = lim

R→∞
lim
L→∞

< [[QiR(t), HL ], A ] >0= lim
R→∞

cik < [QkR(t), A] >0

= c̃ik J
k(t).

186 G. Morchio and F. Strocchi, Ann. Phys. 185, 241 (1988).
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The solution of the above equation is

J(t) = exp [−i c̃ t]J(0).

By the integrability condition of the charge commutators, J i(t) is polynomi-
ally bounded in t and therefore the spectral support of J(0) must consist of
real points.

By writing c̃ in Jordan form, one gets

J i(t) =
k∑

α=1

Pi
α(t) e−iωα t,

where Pi
α(t) are polynomials and ωα belong to the spectral support of J i(0) =∑

α Pi
α(0) relative to c̃. By definition of spectral support, for each α, the zero

order coefficient Pi
α(0) is different from zero, for at least one index i. Thus, for

each α there exists at least one index i such that J̃ i(ω) contains a contribution
of the form Pi

α(0) δ(ω − ωα).187

By (15.31), which relates J̃ i(ω) to the energy spectrum at k → 0, it
follows that there are discrete quasi particle excitations with infinite lifetime
and energy ωα, in the limit k → 0. Each contribution can be isolated by
taking suitable linear combinations of the QiR.

The above theorem provides exact information on how the energy spec-
trum of the Goldstone quasi particles gets modified by the addition of a
symmetry breaking interaction (typically with an external field) with simple
transformation properties, in the sense of (18.3). Since the symmetric part
of the Hamiltonian does not enter in (18.3), the modification of the energy
spectrum, typically the energy gap, does not depend on it.

18.1 Example. Spin Model with Magnetic Field

As a concrete example we consider188 a Heisenberg-like spin model in the
presence of a magnetic field h (for simplicity taken in the 3-direction), with
the following (finite volume of size L) Hamiltonian

HL = Hinv,L(s) + h
∑

|i|≤L
s3i , (18.6)

where Hinv,L(s) is a rotationally invariant spin Hamiltonian with finite range
interactions, having a translationally invariant ground state.

187 The possible additional terms δ(n)(ω − ωα) do not add any further information,
since they only give a more singular description of the same spectrum; in fact,
such contributions can be isolated by constructing new charges by time deriva-
tives of the original Qi

R(t).
188 G. Morchio and F. Strocchi, Ann. Phys. 185, 241 (1988).
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The rotations and the dynamics generate a Lie group G, as the covariance
group of the dynamics. As a consequence of the finite range, the time evolu-
tion induces a delocalization of fast decrease;189 then the commutators of

SaR(t) ≡
∑

|i|≤R
sai (t), α = 1, 2, 3,

with a local A are absolutely summable in norm (as distributions in t) and
the same property holds for the algebra A0 generated by the time evolved
of elements of AL. Under general technical conditions one can also prove
that (18.3) hold on A0.190

The presence of the external magnetic field implies the breaking of the
symmetries generated by S1

R, S
2
R and the matrix c̃ is given by

c̃i i = 0, i = 1, 2, c̃1 2 = −ih = c̃2 1.

Then, Theorem 18.1 implies that there are Goldstone quasi particle with
energy ω(k) satisfying

lim
k→0

ω(k) = h.

189 By (7.16), if A ∈ A(V0) there are suitable positive constants C, v such that for
|t| < v−1|x|,

||[ sa
i , αt(A) ]|| = ||[α−t(sa

i ), A ]|| ≤ Ce−dist(i,VA)/2, (18.7)

where dist(i, VA) is the distance between the lattice point i and the localization
region VA of A. This implies that a fast decrease of the delocalization induced
by the dynamics holds for all A of the form A = ατ (B), τ ∈ R, B ∈ AL and
therefore for the algebra A0 generated by them.

190 G. Morchio and F. Strocchi, Ann. Phys. 185, 241 (1988).
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The discussion of the Goldstone theorem in Chaps. 15 and 17 poses the
problem of understanding the so called Higgs mechanism,191 by which the
breaking of a gauge symmetry is not accompanied by Goldstone bosons (nor
by a gapless energy spectrum). The standard explanation of this mechanism
relies on a perturbative expansion based on the Goldstone strategy discussed
in Sect. 10.A. Also in view of the points raised in Chaps. 10 and 11, a non-
perturbative argument or even a theorem replacing the Goldstone theorem
is desirable.

For this purpose, we briefly recall that the mechanism applies to theories
invariant under local gauge transformations, of which quantum electrody-
namics is the best known prototype. For simplicity, we shall consider the
interaction of charged scalar (and possibly spinor) fields with the vector po-
tential (the so called abelian case). The theory is therefore formulated in terms
of a field algebra F generated by a complex scalar field ϕ(x), carrying charge
q, and a vector potential Aµ(x), µ = 0, 1, 2, 3. The gauge transformations
are defined by

βΛ(ϕ(x)) = eiqΛ(x) ϕ(x), βΛ(Aµ(x)) = Aµ(x) − ∂µΛ(x), (19.1)

with Λ(x) being C∞ functions.
Both the field algebra and the corresponding equations of motions have a

gauge arbitrariness and depend on the choice of independent fields chosen for
the quantization procedure. In the Coulomb gauge, the field algebra is gener-
ated by the Coulomb charged field ϕc(x) and the transverse vector potential
A(x), divA = 0, (the fourth component A0 being a dependent variable). At
the Lagrangean level, the gauge transformations are generated by the electric
current jµ(x), which obeys the Maxwell equations

jµ(x) = ∂νFµ ν(x), Fµν = ∂µAν − ∂νAµ. (19.2)

As in all the gauges in which the Maxwell equations hold as operator equa-
tions, the charged fields do not satisfy locality, (4.2), in particular they cannot
be local with respect to Fµ ν .192

191 P.W. Higgs, Phys. Rev. 145, 1156 (1964).
192 R. Ferrari, L.E. Picasso and F. Strocchi, Comm. Math. Phys. 35, 25 (1974).

F. Strocchi: Symmetry Breaking, Lect. Notes Phys. 643, (2005), pp. 193–196
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Indeed, the canonical quantization of the Coulomb gauge gives the fol-
lowing non-local equal time commutation relations

[F0 i(x, t), ϕ(y, t) ] = Z−1
3

q

4π
∂i

1
|x − y|ϕ(y, t), (19.3)

(with Z3 the photon wave function renormalization constant) showing a delo-
calization given by the derivative of the Coulomb potential (see the discussion
in Sect. 15.2). The lack of locality precludes the regularization of the equal
time commutator through the smearing with the test functions fR, α, since
now the independence on α fails. In fact, the equal time limit is singular, as
displayed by the appearance of the infinite constant Z3 in (19.3).193

As for the non-relativistic Coulomb systems, the lack of locality also pre-
vents the control of the crucial assumption of the local generation of the
symmetry by a local charge on an algebra stable under time evolution (con-
dition II of the Goldstone theorem). In fact, this condition is violated, which
explains why the conclusions of the theorem are evaded.194

In the local renormalizable gauges, like the Feynman gauge, the realiza-
tion of the Higgs mechanism is different. In these gauges the field algebra is
generated by the local charged fields ϕ(x) and by the local vector potential
Aµ(x), the four components of which are quantized as independent fields.

Locality of the field algebra together with the relativistic spectral support
of the Fourier transforms of v.e.v. are the basic properties shared by such
local gauges, so that most of the standard wisdom on quantum field theory is
available; these are in fact the gauges used in perturbation theory. Moreover,
thanks to locality the gauge transformations are generated by the (conserved)
electromagnetic current jµ on the field algebra F .

The price to pay is that one has more degrees of freedom than the physical
ones (e.g. the “longitudinal photons”) and the Maxwell equations hold in a
weak form (weak Gauss’ law),

jµ(x) = ∂νFµ ν(x) + Lµ(x), (19.4)

193 J.A. Swieca, Nuovo Cim. 52A, 242 (1967); K. Symanzik, Lectures on Lagrangean
Quantum Field Theory, Desy report T-71/1.

194 For a general discussion of the analogies between Coulomb systems and gauge
quantum field theories, see G. Morchio and F. Strocchi, Comm. Math. Phys. 99,
153 (1985); Infrared problem, Higgs phenomenon and long range interactions,
in Fundamental Problems of Gauge Field Theory, Erice School 1985, G. Velo
and A.S. Wightman eds. Plenum 1986; Comm. Math. Phys. 111, 593 (1987);
Removal of the infrared cutoff, seizing of the vacuum and symmetry breaking in
many body and in gauge theories, invited talk at the IX Int. Conf. on Mathemat-
ical Physics, Swansea 1988, B. Simon et al. eds. Adam Hilger 1989; F. Strocchi,
Long range dynamics and spontaneous symmetry breaking in many body sys-
tems, lectures at the Maratea Workshop on Fractals, Quasicrystals, Knots and
Algebraic Quantum Mechanics, A. Amann et al. eds. Kluwer 1988.
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where Lµ(x) is an “unphysical” field which has vanishing matrix elements
< Ψ, LµΦ > between physical states (see (19.6.) below). E.g., in the Feynman
gauge one has

jµ(x) = �Aµ(x) = ∂νFµ ν(x) + ∂µ∂
νAν(x), (19.5)

and the subspace Kphys of physical states Ψ is identified by the subsidiary
(Gupta-Bleuler) condition

(∂νAν)−Ψ = 0,

where ∂A− denotes the destruction operator part of the free field ∂A.
Such features are clearly displayed by the local (covariant) quantization

of the free vector potential195 but can be argued to be present in general if
locality holds.196

Theorem 19.1. (Higgs mechanism)197 In a gauge satisfying locality and rel-
ativistic spectral support of the Fourier transforms of the v.e.v., the gauge
symmetry breaking condition, defined for βΛ, Λ = const, as in (15.1)

< δΛA >0 �= 0, A ∈ F , Λ = const,

implies that the Fourier transform of < jµ(x)A >0 contains a δ(p2) singu-
larity (Goldstone mode), but the states responsible for such a contribution
cannot be physical.

Proof. As mentioned before, thanks to locality one can check that the gauge
automorphisms βΛ, Λ = const, are generated by the local charge density
j0 on the field algebra F ; thus Theorem 17.1 applies and one gets a δ(p2)
singularity.

In the JLD representation of the commutator < [j0(fR, α), A ] >0 the con-
tribution ∂iF0 i(fR, α) of (19.4) vanishes for R sufficiently large by locality,
since the differential operator ∂i can be moved to fR and, for R sufficiently
large, the support of F0 i(∂ifR, α) becomes spacelike with respect to the sup-
port of A. Thus, only the term L0(fR, α) can contribute to the commutator
and give rise to the δ(p2) singularity.

In order to see whether such a Goldstone mode may appear in the physi-
cal spectrum, i.e. be associated to physical states, one needs a more detailed
analysis of the vector space of states defined by the vacuum correlation func-
tions of the field algebra F .

195 See e.g. S.S. Schweber, An Introduction to Relativistic Quantum Field Theory,
Harper and Row 1961, Chap. 9.

196 F. Strocchi, Selected Topics on the General Properties of Quantum Field theory,
World Scientific 1993, Chaps. VI, VII; the interplay between locality and Gauss’
law is discussed e.g. in F. Strocchi, Elements of Quantum Mechanics of Infinite
Systems, World Scientific 1985, Part C, Chap. II.

197 F. Strocchi, Comm. Math. Phys. 56, 57 (1977).
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The first point is that the vacuum functional cannot be positive, since
otherwise

< (j − ∂F ) (j − ∂F ) >0 = 0

would imply
(j − ∂F )Ψ0 = 0

and, by a general theorem on local operators annihilating the vacuum (Reeh-
Schlieder theorem198), j − ∂F = 0, which is incompatible with a local field
algebra (see Refs. in footnote 196).

Now, quite generally, by the same argument of the GNS representation,
the vacuum functional provides a representation of the field algebra F in a
vector space V with (an indefinite) inner product< , > defined by the vacuum
correlation functions and under general conditions199 one can embed it into
a Hilbert space K, with scalar product ( , ), such that ∀A, B ∈ F

< Ψ0, A
∗BΨ0 >=< AΨ0, BΨ0 >= (AΨ0, η BΨ0),

where η is the metric operator, satisfying η∗ = η, η2 = 1, ηΨ0 = Ψ0.200

The subspace Kphys ⊂ K of physical states is characterized by the subsidiary
condition

< Ψ, Lµ(x)Φ >= (Ψ, ηLµ(x)Φ) = 0, ∀Ψ,Φ ∈ Kphys. (19.6)

For the analysis of the nature of the Goldstone mode, we insert a complete
set of states, {Φn} = {Ψn ∈ Kphys}, {(Ψ⊥)n ∈ K⊥

phys}, in the two-point
function < L0(x)A >0 and obtain
∑
n

(L0(x)Ψ0, η Φn)(Φn, AΨ0) =
∑
n

< Ψ0, L0(x)Φn > (Φn, AΨ0). (19.7)

By the characterization of physical states, the first factor on the right hand
side of (19.7) vanishes for Ψn ∈ Kphys and therefore no physical state con-
tributes to the Goldstone singularity δ(p2), i.e. the Goldstone mode is un-
physical.

198 See R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That,
Benjamin-Cummings 1980, Theorem 4-2.

199 G. Morchio and F. Strocchi, Ann. H. Poincareé, A 33, 251 (1980); F. Strocchi,
Selected Topics etc., loc. cit. Chap. VI.

200 In the Feynman (Gupta-Bleuler) gauge of free QED, η = (−1)N0 , N0 =∫
d3k a∗

0(k) a0(k) (the number of “timelike photons”).
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J. Fröhlich, G. Morchio and F. Strocchi, Ann. Phys. 119, 241 (1979)

G. Morchio and F. Strocchi, Nucl. Phys. B211, 471 (1984)

G. Morchio and F. Strocchi, Infrared problem, Higgs phenomenon and long range
interactions, in Fundamental Problems of Gauge Field Theory, G. Velo and A.S.
Wightman eds., Plenum 1986

T.W. Kibble, Phys. Rev. 173, 1527; 174, 1882; 175, 1624 (1968)

R. Haag, Subject, Object and Measurement, in The Physicist’s Conception of Na-
ture, J. Mehra ed., Reidel 1973

A.S. Wightman, Some comments on the quantum theory of measurement, in Prob-
abilistic Methods in Mathematical Physics, F. Guerra et al. eds., World Scientific
1992

D.A. Dubin and G.L. Sewell, Jour, Math. Phys. 11, 2290 (1970)

G.L. Sewell, Comm. Math. Phys. 33, 43 (1973)

G. Morchio and F. Strocchi, Comm. Math. Phys. 99, 153 (1985)

G. Morchio and F. Strocchi, Jour. Math. Phys. 28, 622 (1987)

D. Kastler, Topics in the algebraic approach to field theory, in Cargèse Lectures in
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